Tapeworm Drug Inhibits Colon Cancer Metastasis – First Results in Mice – Clinical Trials Planned

The compound silences a gene that triggers the formation of metastases in colon cancer. Professor Ulrike Stein (Experimental and Clinical Research Center, Charité/Max Delbrück Center, MDC, Berlin, Germany) made this discovery in collaboration with Professor Robert H. Shoemaker (National Cancer Institute, NCI, Frederick, Maryland, USA (JNCI, Vol. 103, No. 12, June 17, 2011)*. Plans are already underway with Professor Peter M. Schlag (Charité Comprehensive Cancer Center) to conduct a clinical trial.

Colon cancer is one of the most common tumor diseases in Western countries. In Germany alone, there are approximated 73 000 new cases of the disease every year. Despite surgery, chemotherapy and radiation therapy, only about half of the affected patients are cured.

The reason is that around 20 percent of the colon cancer patients already have metastases at diagnosis and in about one third of the patients, metastasis occurs despite successful initial treatment. Of these patients with metastatic colon cancer, the five-year survival rate is only about 10 percent. By contrast, for nonmetastatic colon cancer patients the survival rate is 90 percent.

Scientists have known for several years that the gene S100A4/metastasin can initiate colon cancer metastasis. Five years ago Professor Stein, working together with Professor Schlag and Professor Walter Birchmeier (MDC), showed how this gene is regulated. They found that the beta-catenin gene, when mutant, activates this S100A4/metastasin gene, thus triggering colon cancer metastasis. Beta-catenin normally regulates cellular adhesion.

The scientists looked for compounds that block the expression of the metastasin gene. They screened 1280 compounds and found what they were looking for: niclosamide, a drug until now approved for use to treat intestinal parasite infections from tapeworms.

Surprisingly, the researchers discovered that niclosamide inhibits the beta catenin-driven expression of the S100A4/metastasin gene, both in the cell culture and in mice. The animals had fewer metastases. Next, the researchers want to conduct clinical trials to find out whether the compound is also effective in patients with metastasizing colon cancer.

*Novel Effect of Antihelminthic Niclosamide on S100A4-Mediated Metastatic Progression in Colon Cancer

Ulrike Sack, Wolfgang Walther, Dominic Scuiero, Mike Selby, Dennis Kobelt, Margit Lemm, Iduna Fichtner, Peter M. Schlag, Robert H. Shoemaker, Ulrike Stein

Experimental and Clinical Research Center , Charité University Medicine at the Max Delbrück-Center for Molecular Medicine, Berlin

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de

Media Contact

Barbara Bachtler Max-Delbrück-Centrum

More Information:

http://www.mdc-berlin.de/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors