Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrons get off the track - Scientists find new principle for spin transistor

20.07.2012
Performance of present day electronics is reaching its boundaries since faster transistor operation lead to high power consumption and heat generation.

Several alternative schemes are being explored to possibly overcome these limitations, including the use of the electrons’ spin in electronics. Now a research team from the University of Regensburg around Dieter Weiss and Klaus Richter in Germany together with colleagues from the Polish Academy of Sciences in Warsaw has made a significant step in utilizing the electrons’ spin for transistor action.

If spin-based electronics prevails the new switching concept might turn out to be useful as it allows for switching the spin-polarization of an electric current on and off, tuning it continuously or reading it off electrically by simple resistance measurements.

In conventional field effect transistors the current through the device can be switched on and off by an electric field. The Regensburg/Warsaw team has developed a new way to control electron current in a transistor-like structure by using the electrons’ spin, a property which causes electrons to act like tiny compass needles in a magnetic field. However, in contrast to a classical compass needle the quantum mechanical version can align parallel (spin-up) or anti-parallel (spin-down) to the externally applied magnetic field direction.

What is really new is that one can not only tune the electrical current in the device but also the spin-polarization of the electron current, i.e. the ratio of spin-up and spin-down electrons carrying the electrical current. To do so they use the rate of change of the electrons’ spin direction in a spatially varying magnetic field orientation. In the transistor 'on'-state, electrons travel through the device unhindered, their spin direction following a slowly rotating magnetic guiding field.

In the 'off'-state the guiding field is twisted and changes direction rapidly which causes electrons to deflect into energetically forbidden tracks, suppressing current. An analogy of the process would be a car going around a sharp turn. If the car is sufficiently slow it stays on the road and makes it around the turn (‘on’-state). If the car is too fast it veers off the street (‘off’-state).

In the experiment the research team placed ferromagnetic stripes on top of a two-dimensional electron gas which usually serves as an electrically conducting channel in transistors. The material of choice was the semiconductor CdMnTe, known for the large splitting between energy levels for spin-up and spin-down electrons. The magnetic stray field around the ferromagnetic stripes forms in the plane of the electron gases a helical structure of the magnetic field vector.

With an externally applied magnetic field B, generated by large coils, the stray field components in the direction of the external field get larger, the ones opposite to the B-field weaker and eventually vanish. Without or with sufficiently small external B-field the electron spin is rotated continuously by the helical stray field as it traverses the device following the helical B-field pattern. This corresponds to the car moving slowly through the turn. If the external magnetic field is switched to a certain value the electron spins are no longer able to follow the changes of the magnetic field and need to jump to the energetically higher spin level, giving rise to a higher resistance. In the car picture this corresponds to getting off the track.

As the effect allows for tuning the resistance of a two-dimensional electron system and – under certain circumstances – to switch the current in the channel on and off, it constitutes transistor action. In contrast to other switching schemes the Regensburg team uses so-called Landau-Zener transitions between spin-down and spin-up energy levels. The simplicity of the concept might be transferable to other systems and could be straightforwardly implemented into a device which works at liquid helium temperatures and allows switching the spin-polarization of an electric current on and off.

The results of the Regensburg/Warsaw team are reported in the recent issue of Science (Betthausen et al., doi: 10.1126/science.1221350).

Media Contact:
Prof. Dr. Dieter Weiss
Universität Regensburg
Institute of Experimental and Applied Physics
Tel.: +49 (0)941 943-3198
Dieter.Weiss@physik.uni-regensburg.de

Alexander Schlaak | idw
Further information:
http://www.uni-regensburg.de

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>