Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrons get off the track - Scientists find new principle for spin transistor

20.07.2012
Performance of present day electronics is reaching its boundaries since faster transistor operation lead to high power consumption and heat generation.

Several alternative schemes are being explored to possibly overcome these limitations, including the use of the electrons’ spin in electronics. Now a research team from the University of Regensburg around Dieter Weiss and Klaus Richter in Germany together with colleagues from the Polish Academy of Sciences in Warsaw has made a significant step in utilizing the electrons’ spin for transistor action.

If spin-based electronics prevails the new switching concept might turn out to be useful as it allows for switching the spin-polarization of an electric current on and off, tuning it continuously or reading it off electrically by simple resistance measurements.

In conventional field effect transistors the current through the device can be switched on and off by an electric field. The Regensburg/Warsaw team has developed a new way to control electron current in a transistor-like structure by using the electrons’ spin, a property which causes electrons to act like tiny compass needles in a magnetic field. However, in contrast to a classical compass needle the quantum mechanical version can align parallel (spin-up) or anti-parallel (spin-down) to the externally applied magnetic field direction.

What is really new is that one can not only tune the electrical current in the device but also the spin-polarization of the electron current, i.e. the ratio of spin-up and spin-down electrons carrying the electrical current. To do so they use the rate of change of the electrons’ spin direction in a spatially varying magnetic field orientation. In the transistor 'on'-state, electrons travel through the device unhindered, their spin direction following a slowly rotating magnetic guiding field.

In the 'off'-state the guiding field is twisted and changes direction rapidly which causes electrons to deflect into energetically forbidden tracks, suppressing current. An analogy of the process would be a car going around a sharp turn. If the car is sufficiently slow it stays on the road and makes it around the turn (‘on’-state). If the car is too fast it veers off the street (‘off’-state).

In the experiment the research team placed ferromagnetic stripes on top of a two-dimensional electron gas which usually serves as an electrically conducting channel in transistors. The material of choice was the semiconductor CdMnTe, known for the large splitting between energy levels for spin-up and spin-down electrons. The magnetic stray field around the ferromagnetic stripes forms in the plane of the electron gases a helical structure of the magnetic field vector.

With an externally applied magnetic field B, generated by large coils, the stray field components in the direction of the external field get larger, the ones opposite to the B-field weaker and eventually vanish. Without or with sufficiently small external B-field the electron spin is rotated continuously by the helical stray field as it traverses the device following the helical B-field pattern. This corresponds to the car moving slowly through the turn. If the external magnetic field is switched to a certain value the electron spins are no longer able to follow the changes of the magnetic field and need to jump to the energetically higher spin level, giving rise to a higher resistance. In the car picture this corresponds to getting off the track.

As the effect allows for tuning the resistance of a two-dimensional electron system and – under certain circumstances – to switch the current in the channel on and off, it constitutes transistor action. In contrast to other switching schemes the Regensburg team uses so-called Landau-Zener transitions between spin-down and spin-up energy levels. The simplicity of the concept might be transferable to other systems and could be straightforwardly implemented into a device which works at liquid helium temperatures and allows switching the spin-polarization of an electric current on and off.

The results of the Regensburg/Warsaw team are reported in the recent issue of Science (Betthausen et al., doi: 10.1126/science.1221350).

Media Contact:
Prof. Dr. Dieter Weiss
Universität Regensburg
Institute of Experimental and Applied Physics
Tel.: +49 (0)941 943-3198
Dieter.Weiss@physik.uni-regensburg.de

Alexander Schlaak | idw
Further information:
http://www.uni-regensburg.de

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>