Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrons get off the track - Scientists find new principle for spin transistor

20.07.2012
Performance of present day electronics is reaching its boundaries since faster transistor operation lead to high power consumption and heat generation.

Several alternative schemes are being explored to possibly overcome these limitations, including the use of the electrons’ spin in electronics. Now a research team from the University of Regensburg around Dieter Weiss and Klaus Richter in Germany together with colleagues from the Polish Academy of Sciences in Warsaw has made a significant step in utilizing the electrons’ spin for transistor action.

If spin-based electronics prevails the new switching concept might turn out to be useful as it allows for switching the spin-polarization of an electric current on and off, tuning it continuously or reading it off electrically by simple resistance measurements.

In conventional field effect transistors the current through the device can be switched on and off by an electric field. The Regensburg/Warsaw team has developed a new way to control electron current in a transistor-like structure by using the electrons’ spin, a property which causes electrons to act like tiny compass needles in a magnetic field. However, in contrast to a classical compass needle the quantum mechanical version can align parallel (spin-up) or anti-parallel (spin-down) to the externally applied magnetic field direction.

What is really new is that one can not only tune the electrical current in the device but also the spin-polarization of the electron current, i.e. the ratio of spin-up and spin-down electrons carrying the electrical current. To do so they use the rate of change of the electrons’ spin direction in a spatially varying magnetic field orientation. In the transistor 'on'-state, electrons travel through the device unhindered, their spin direction following a slowly rotating magnetic guiding field.

In the 'off'-state the guiding field is twisted and changes direction rapidly which causes electrons to deflect into energetically forbidden tracks, suppressing current. An analogy of the process would be a car going around a sharp turn. If the car is sufficiently slow it stays on the road and makes it around the turn (‘on’-state). If the car is too fast it veers off the street (‘off’-state).

In the experiment the research team placed ferromagnetic stripes on top of a two-dimensional electron gas which usually serves as an electrically conducting channel in transistors. The material of choice was the semiconductor CdMnTe, known for the large splitting between energy levels for spin-up and spin-down electrons. The magnetic stray field around the ferromagnetic stripes forms in the plane of the electron gases a helical structure of the magnetic field vector.

With an externally applied magnetic field B, generated by large coils, the stray field components in the direction of the external field get larger, the ones opposite to the B-field weaker and eventually vanish. Without or with sufficiently small external B-field the electron spin is rotated continuously by the helical stray field as it traverses the device following the helical B-field pattern. This corresponds to the car moving slowly through the turn. If the external magnetic field is switched to a certain value the electron spins are no longer able to follow the changes of the magnetic field and need to jump to the energetically higher spin level, giving rise to a higher resistance. In the car picture this corresponds to getting off the track.

As the effect allows for tuning the resistance of a two-dimensional electron system and – under certain circumstances – to switch the current in the channel on and off, it constitutes transistor action. In contrast to other switching schemes the Regensburg team uses so-called Landau-Zener transitions between spin-down and spin-up energy levels. The simplicity of the concept might be transferable to other systems and could be straightforwardly implemented into a device which works at liquid helium temperatures and allows switching the spin-polarization of an electric current on and off.

The results of the Regensburg/Warsaw team are reported in the recent issue of Science (Betthausen et al., doi: 10.1126/science.1221350).

Media Contact:
Prof. Dr. Dieter Weiss
Universität Regensburg
Institute of Experimental and Applied Physics
Tel.: +49 (0)941 943-3198
Dieter.Weiss@physik.uni-regensburg.de

Alexander Schlaak | idw
Further information:
http://www.uni-regensburg.de

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>