Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effortless sailing with fluid flow cloak

12.08.2011
Duke engineers have already shown that they can "cloak" light and sound, making objects invisible -- now, they have demonstrated the theoretical ability to significantly increase the efficiency of ships by tricking the surrounding water into staying still.

"Ships expend a great deal of energy pushing the water around them out of the way as they move forward," said Yaroslav Urzhumov, assistant research professor in electrical and computer engineering at Duke's Pratt School of Engineering. "What our cloak accomplishes is that it reduces the mass of fluid that has to be displaced to a bare minimum.

"We accomplish this by tricking the water into being perfectly still everywhere outside the cloak," Urzhumov said. "Since the water is still, there is no shear force, and you don't have to drag anything extra with your object. So, comparing a regular vessel and a cloak of the same size, the latter needs to push a much smaller volume of water, and that's where the hypothesized energy efficiency comes from."

The results of Urzhumov's analysis were published online in the journal Physical Review Letters. The research was supported by the U.S. Office of Naval Research and a Multidisciplinary University Research Initiative (MURI) grant through the U.S. Army Research Office. Urzhumov works in the laboratory of David R. Smith, William Bevan Professor of electrical and computer engineering at Duke.

While the cloak postulated by Urzhumov differs from other cloaks designed to make objects seem invisible to light and sound, it follows the same basic principles – the use of a man-made material that can alter the normal forces of nature in new ways.

In Urzhumov's fluid flow cloak, he envisions the hull of a vessel covered with porous materials – analogous to a rigid sponge-like material – which would be riddled with holes and passages. Strategically placed within this material would be tiny pumps, which would have the ability to push the flowing water along at various forces.

"The goal is make it so the water passing through the porous material leaves the cloak at the same speed as the water surrounding by the vessel," Urzhumov said. "In this way, the water outside the hull would appear to be still relative to the vessel, thereby greatly reducing the amount of energy needed by the vessel to push vast quantities of water out of the way as it progresses."

While the Duke invisibility cloak involved a man-made structure – or metamaterial – based on parallel rows of fiberglass slats etched with copper, Urzhumov envisions a different sort of metamaterial for his fluid flow cloak.

"In our case, I see this porous medium as a three-dimensional lattice, or array, of metallic plates," he said. "You can imagine a cubic lattice of wire-supported blades, which would have to be oriented properly to create drag and lift forces that depend on the flow direction. In addition, some of the cells of this array would be equipped with fluid-accelerating micro-pumps."

Urzhumov explained that when a regular vessel moves through fluid, it also pushes and displaces a volume of water that greatly exceeds the volume of the vessel itself. That is because in a viscous fluid like water, an object cannot just move a single layer of water without all others; the shear force effectively attaches an additional mass of water to the object.

"When you try to drag an object on a fishing line through water, it feels much heavier than the object itself, right?" he said. "That's because you are dragging an additional volume of water with it."

Based on this understanding of the flow cloaking phenomenon, Urzhumov believes that the energy expended by the micropumps could be significantly less than that needed to push an uncloaked vessel through the water, leading to the greatly improved efficiency.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>