Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Earth-like planets found

19.04.2013
A team of scientists, including Carnegie’s Alan Boss, has discovered two Earth-like planets in the habitable orbit of a Sun-like star. Their work is published in Science Express.

Using observations gathered by NASA’s Kepler Mission, the team, led by William Borucki of the NASA Ames Research Center, found five planets orbiting a Sun-like star called Kepler-62.

Four of these planets are so-called super-Earths, larger than our own planet, but smaller than even the smallest ice giant planet in our Solar System. These new super-Earths have radii of 1.3, 1.4, 1.6, and 1.9 times that of Earth. In addition, one of the five was a roughly Mars-sized planet, half the size of Earth.

Kepler-62 is one of about 170,000 stars observed by the Kepler Space Telescope, with a mass about 69% of that of our Sun. The Kepler Space Telescope reveals for planets orbiting a star by detecting a small, temporary dimming of the star as a planet passes between it and the telescope.

The two super-Earths with radii of 1.4 and 1.6 Earth radii orbit their star at distances where they receive about 41% and 120%, respectively, of the warmth from their star that the Earth receives from the Sun. The planets are thus in the star’s habitable zone; they have the right temperatures to maintain liquid water on their surfaces and are theoretically hospitable to life.

Theoretical modeling of the super-Earth planets, Kepler-62e and Kepler-62f, suggests that both could be solid, either rocky--or rocky with frozen water.

“This appears to be the best example our team has found yet of Earth-like planets in the habitable zone of a Sun-like star,” Boss said.

Caption: This artist's conception depicts Kepler-62e, a super-Earth-size planet in the habitable zone of a star smaller and cooler than the sun, located about 1,200 light-years from Earth in the constellation Lyra. Kepler-62e orbits it's host star every 122 days and is roughly 60 percent larger than Earth in size. Scientists do not know if Kepler-62e is a waterworld or if it has a solid surface, but its discovery signals another step closer to finding a world similar to Earth. Image is courtesy of NASA/Ames/JPL-Caltech.
Kepler was competitively selected as the tenth Discovery mission. Funding for this mission is provided by NASA’s Science Mission Directorate. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The Spitzer Space Telescope is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation.

This research was supported by DFG funding ENP Ka 3142/1-1; NAI; the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (Grant 267864); NASA through the Kepler Participating Scientist Program; NSF via grant AST-1109928; NASA ADAP12-0172; the Kepler Participating Scientist Program (PSP) through grant NNX12AC76G; by NASA PSP grants NNX08AR04G and NNX12AF73G; NSF Career grant AST-0645416.

Alan Boss | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>