Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Earth's rotation affects vortices in nature

16.10.2013
French researchers develop sophisticated mathematical model to study the behavior of earthly vortices, like hurricanes and ocean currents

What do smoke rings, tornadoes and the Great Red Spot of Jupiter have in common?


This is a view from above of the growing and spiraling wave field emitted by a geophysical vortex due to the radiative instability. The black circle represents a boundary of the vortex core.

Credit: J. Park/Ecole Polytechnique-CNRS

They are all examples of vortices, regions within a fluid (liquid, gas or plasma) where the flow spins around an imaginary straight or curved axis. Understanding how geophysical (natural world) vortices behave can be critical for tasks such as weather forecasting and environmental pollution monitoring.

In a new paper in the journal Physics of Fluids, researchers Junho Park and Paul Billant of the CNRS Laboratoire d'Hydrodynamique in France describe their study of one such geophysical vortex behavior, radiative instability, and how it is affected by two factors, density stratification and background rotation.

Radiative instability is a phenomenon that alters the behavior of fluid flows and can deform a vortex. The "radiative" tag refers to the fact that it is an instability caused by the radiation of waves outward from a vortex.

"These waves can exist as soon as there is a density stratification -- a variation of densities -- throughout the vertical column of the vortex," Park said. "In this study, we have considered how background rotation -- in this case, the rotation of the Earth -- impacts them."

Examples of density stratification in nature, Park explained, include the decrease in air density as one moves higher in the atmosphere or the increase in water density due to salinity and temperature with increasing ocean depth. "So, the waves in our mathematical model are somewhat analogous to waves on the ocean surface," he said. "Likewise, the impact from background rotation on our modeled waves serves as an equal for the impact of the Coriolis force caused by the Earth's rotation."

"What we learned from our models is that strong background rotation suppresses the radiative instability, a characteristic that had been expected but whose dynamics had never been studied precisely," Park said. "We've now developed a sophisticated mathematical means to explain this phenomenon, and that's important to being better able to study and understand the behavior of geophysical vortices such as hurricanes and ocean currents."

Park said that he and Billant next plan to study instability behaviors in vortices with non-columnar shapes. "For example," he said, "there are pancake-shaped flows called Mediterranean eddies, or meddies, that would be worth studying since we know they affect the mixing of the components that make up the ocean ecosystem."

The article, "Instabilities and waves on a columnar vortex in a strongly-stratified and rotating fluid" by Junho Park and Paul Billant appears in the journal Physics of Fluids. See: http://dx.doi.org/10.1063/1.4816512

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>