Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Earth's rotation affects vortices in nature

16.10.2013
French researchers develop sophisticated mathematical model to study the behavior of earthly vortices, like hurricanes and ocean currents

What do smoke rings, tornadoes and the Great Red Spot of Jupiter have in common?


This is a view from above of the growing and spiraling wave field emitted by a geophysical vortex due to the radiative instability. The black circle represents a boundary of the vortex core.

Credit: J. Park/Ecole Polytechnique-CNRS

They are all examples of vortices, regions within a fluid (liquid, gas or plasma) where the flow spins around an imaginary straight or curved axis. Understanding how geophysical (natural world) vortices behave can be critical for tasks such as weather forecasting and environmental pollution monitoring.

In a new paper in the journal Physics of Fluids, researchers Junho Park and Paul Billant of the CNRS Laboratoire d'Hydrodynamique in France describe their study of one such geophysical vortex behavior, radiative instability, and how it is affected by two factors, density stratification and background rotation.

Radiative instability is a phenomenon that alters the behavior of fluid flows and can deform a vortex. The "radiative" tag refers to the fact that it is an instability caused by the radiation of waves outward from a vortex.

"These waves can exist as soon as there is a density stratification -- a variation of densities -- throughout the vertical column of the vortex," Park said. "In this study, we have considered how background rotation -- in this case, the rotation of the Earth -- impacts them."

Examples of density stratification in nature, Park explained, include the decrease in air density as one moves higher in the atmosphere or the increase in water density due to salinity and temperature with increasing ocean depth. "So, the waves in our mathematical model are somewhat analogous to waves on the ocean surface," he said. "Likewise, the impact from background rotation on our modeled waves serves as an equal for the impact of the Coriolis force caused by the Earth's rotation."

"What we learned from our models is that strong background rotation suppresses the radiative instability, a characteristic that had been expected but whose dynamics had never been studied precisely," Park said. "We've now developed a sophisticated mathematical means to explain this phenomenon, and that's important to being better able to study and understand the behavior of geophysical vortices such as hurricanes and ocean currents."

Park said that he and Billant next plan to study instability behaviors in vortices with non-columnar shapes. "For example," he said, "there are pancake-shaped flows called Mediterranean eddies, or meddies, that would be worth studying since we know they affect the mixing of the components that make up the ocean ecosystem."

The article, "Instabilities and waves on a columnar vortex in a strongly-stratified and rotating fluid" by Junho Park and Paul Billant appears in the journal Physics of Fluids. See: http://dx.doi.org/10.1063/1.4816512

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>