Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dusty substructure in a galaxy far far away

31.03.2015

Scientists at the Max Planck Institute for Astrophysics (MPA) have combined high-resolution images from the ALMA telescopes with a new scheme for undoing the distorting effects of a powerful gravitational lens in order to provide the first detailed picture of a young and distant galaxy, over 11 billion light-years from Earth. The reconstructed images show that star formation is heating interstellar dust and making it glow strongly in three distinct clumps embedded in a broader distribution, suggesting that object may be a rotating disk galaxy seen nearly edge-on.

Galaxies are constantly forming new stars within dense clouds of interstellar material. The star formation rate in today's galaxies is, however, much lower than it used to be. When the universe was about a quarter its current age, star formation was at its peak, and so astronomers are keen to learn about this period.


Fig. 1 The ALMA image of the continuum emission at 236 GHz of the lensed galaxy SDP.81 at two angular resolutions. The lensed system consists of four images with an extended, low-surface brightness Einstein ring.


Fig. 2 The modelled sky-brightness distribution for the image in Fig. 1 (left) and the reconstructed surface brightness distribution (right) of the background galaxy. There are three areas with enhanced emission, which could indicate a disk galaxy seen edge-on.


Fig. 3 This map shows the reconstructed star formation rate of the distant galaxy, which is actually quite small (as indicated by the length scale in light-years). The colour coding shows the amount of dust heated by radiation from the young stars.

Looking back in time is possible because of the finite speed of light, but only by looking out to great distances, which in turn means that young galaxies appear very small and very faint. In addition, most of their new-born stars cannot be seen directly, because their radiation is absorbed by dust in the surrounding gas cloud and is re-emitted at far-infrared wavelengths.

As a result, star-forming regions in distant galaxies are one of the prime targets for the Atacama Large Millimetre/submillimetre Array. ALMA will consist of 66 high precision antennas, located on the Chajnantor plateau at 5000 meters altitude in northern Chile.

The data from the individual antennas can be combined interferometrically, and the 15 kilometre span of the telescope provides resolution of better than a tenth of an arc-second. On its own, however, even this capability is not sufficient to make detailed pictures of young galaxies at the peak of their star formation.

"At a recent conference, ALMA scientists presented data they had used to verify the scientific capabilities of their array, among them an image of a strongly gravitationally lensed system, which immediately raised our interest", remembers Simona Vegetti, postdoctoral scientist at MPA.

"Because of the lensing, the background galaxy is strongly magnified, by 17 times actually, which is why we can see it at all. Together with ALMA's unique angular resolution, this gave us the chance to try and see details in the distribution of dust in such a far-away galaxy for the first time."

Strong gravitational lensing happens when a background galaxy is closely aligned with a foreground mass concentration such as a cluster of galaxies, which bends light-rays from the source on their way to the observer. The foreground lens is, however, an imperfect optical system, leading to very large distortions (see Fig. 1).

Nevertheless, from the properties of the lensed images, the mass distribution of the lensing system can be determined and a "true" (i.e. undistorted) image of the distant galaxy can be reconstructed. "Previous attempts to do this had assumed the background galaxies to be smooth and regular", explains Matus Rybak, who carried out the computer modelling at MPA. "This seems likely to be a very poor approximation to the structure of a strongly star-forming galaxy, and the raw ALMA images gave clear hints that this background source is complex. The new, more general approach we have developed is much better suited to irregular systems."

This intuition is borne out by the reconstructed image of the galaxy SDP.81 which shows star formation to be concentrated in three distinct regions (see Fig. 2). "This is the first time, that we can see structure in the dust emission of a z=3 galaxy on scales smaller than 150 light-years", points out Simona Vegetti. At this cosmic time, typical galaxies were forming stars at their peak rate, and indeed SDP.81 is forming about 300 solar masses of stars every year. (In our Milky Way, the star formation rate is about 3 solar masses per year.)

The complex structure of the galaxy may indicate that it is a rotating disk with a central bulge that is seen (and lensed) edge-on; alternatively it may be a system which is undergoing a merger in which the separate components are still visible. To distinguish between these possibilities, data on the motions of gas within the galaxy are needed, so the next step for the MPA team together with their colleagues Paola Andreani at ESO and John McKean at the University of Groningen and the Netherlands Institute for Radio Astronomy (ASTRON) will be to analyse the molecular line observations of this system which ALMA has also obtained.

Links:
Original publication
ALMA imaging of SDP.81 I. A pixelated reconstruction of the far-infrared continuum emission, M. Rybak, J. P. McKean, S. Vegetti, P. Andreani and S. D. M. White, linkPfeilExtern.gifsubmitted to MNRAS

Contact:
Simona Vegetti
Max-Planck-Institut für Astrophysik
Phone: 089 30000-2285
Email: svegettimpa-garching.mpg.de

Hannelore Hämmerle
Press Officer
Max-Planck-Institut für Astrophysik
Tel. +49 89 30000-3980
E-mail: prmpa-garching.mpg.de

Hannelore Hämmerle | Max-Planck-Institut für Astrophysik
Further information:
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1504_aaa/news1504_aaa-en.html

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>