Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dusty substructure in a galaxy far far away

31.03.2015

Scientists at the Max Planck Institute for Astrophysics (MPA) have combined high-resolution images from the ALMA telescopes with a new scheme for undoing the distorting effects of a powerful gravitational lens in order to provide the first detailed picture of a young and distant galaxy, over 11 billion light-years from Earth. The reconstructed images show that star formation is heating interstellar dust and making it glow strongly in three distinct clumps embedded in a broader distribution, suggesting that object may be a rotating disk galaxy seen nearly edge-on.

Galaxies are constantly forming new stars within dense clouds of interstellar material. The star formation rate in today's galaxies is, however, much lower than it used to be. When the universe was about a quarter its current age, star formation was at its peak, and so astronomers are keen to learn about this period.


Fig. 1 The ALMA image of the continuum emission at 236 GHz of the lensed galaxy SDP.81 at two angular resolutions. The lensed system consists of four images with an extended, low-surface brightness Einstein ring.


Fig. 2 The modelled sky-brightness distribution for the image in Fig. 1 (left) and the reconstructed surface brightness distribution (right) of the background galaxy. There are three areas with enhanced emission, which could indicate a disk galaxy seen edge-on.


Fig. 3 This map shows the reconstructed star formation rate of the distant galaxy, which is actually quite small (as indicated by the length scale in light-years). The colour coding shows the amount of dust heated by radiation from the young stars.

Looking back in time is possible because of the finite speed of light, but only by looking out to great distances, which in turn means that young galaxies appear very small and very faint. In addition, most of their new-born stars cannot be seen directly, because their radiation is absorbed by dust in the surrounding gas cloud and is re-emitted at far-infrared wavelengths.

As a result, star-forming regions in distant galaxies are one of the prime targets for the Atacama Large Millimetre/submillimetre Array. ALMA will consist of 66 high precision antennas, located on the Chajnantor plateau at 5000 meters altitude in northern Chile.

The data from the individual antennas can be combined interferometrically, and the 15 kilometre span of the telescope provides resolution of better than a tenth of an arc-second. On its own, however, even this capability is not sufficient to make detailed pictures of young galaxies at the peak of their star formation.

"At a recent conference, ALMA scientists presented data they had used to verify the scientific capabilities of their array, among them an image of a strongly gravitationally lensed system, which immediately raised our interest", remembers Simona Vegetti, postdoctoral scientist at MPA.

"Because of the lensing, the background galaxy is strongly magnified, by 17 times actually, which is why we can see it at all. Together with ALMA's unique angular resolution, this gave us the chance to try and see details in the distribution of dust in such a far-away galaxy for the first time."

Strong gravitational lensing happens when a background galaxy is closely aligned with a foreground mass concentration such as a cluster of galaxies, which bends light-rays from the source on their way to the observer. The foreground lens is, however, an imperfect optical system, leading to very large distortions (see Fig. 1).

Nevertheless, from the properties of the lensed images, the mass distribution of the lensing system can be determined and a "true" (i.e. undistorted) image of the distant galaxy can be reconstructed. "Previous attempts to do this had assumed the background galaxies to be smooth and regular", explains Matus Rybak, who carried out the computer modelling at MPA. "This seems likely to be a very poor approximation to the structure of a strongly star-forming galaxy, and the raw ALMA images gave clear hints that this background source is complex. The new, more general approach we have developed is much better suited to irregular systems."

This intuition is borne out by the reconstructed image of the galaxy SDP.81 which shows star formation to be concentrated in three distinct regions (see Fig. 2). "This is the first time, that we can see structure in the dust emission of a z=3 galaxy on scales smaller than 150 light-years", points out Simona Vegetti. At this cosmic time, typical galaxies were forming stars at their peak rate, and indeed SDP.81 is forming about 300 solar masses of stars every year. (In our Milky Way, the star formation rate is about 3 solar masses per year.)

The complex structure of the galaxy may indicate that it is a rotating disk with a central bulge that is seen (and lensed) edge-on; alternatively it may be a system which is undergoing a merger in which the separate components are still visible. To distinguish between these possibilities, data on the motions of gas within the galaxy are needed, so the next step for the MPA team together with their colleagues Paola Andreani at ESO and John McKean at the University of Groningen and the Netherlands Institute for Radio Astronomy (ASTRON) will be to analyse the molecular line observations of this system which ALMA has also obtained.

Links:
Original publication
ALMA imaging of SDP.81 I. A pixelated reconstruction of the far-infrared continuum emission, M. Rybak, J. P. McKean, S. Vegetti, P. Andreani and S. D. M. White, linkPfeilExtern.gifsubmitted to MNRAS

Contact:
Simona Vegetti
Max-Planck-Institut für Astrophysik
Phone: 089 30000-2285
Email: svegettimpa-garching.mpg.de

Hannelore Hämmerle
Press Officer
Max-Planck-Institut für Astrophysik
Tel. +49 89 30000-3980
E-mail: prmpa-garching.mpg.de

Hannelore Hämmerle | Max-Planck-Institut für Astrophysik
Further information:
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1504_aaa/news1504_aaa-en.html

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>