Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the dust clears: New observations of solar systems in the making

18.02.2011
New observations with the SUBARU Telescope in Hawaii show the protoplanetary disks surrounding two young stars in unprecedented detail.

This is the first time that disk structures comparable in size to our own solar system have been resolved this clearly, revealing features such as rings and gaps that are associated with the formation of giant planets.


This image taken with the HiCIAO planet-hunter camera on SUBARU Telescope shows a bright arc of scattered light (white) from the protoplanetary disk around the young star LkCa 15 (center, masked out with a dark circle). The arc’s sharp inner edge traces the outline of a wide gap in the disk. The gap is decidedly lopsided – it is markedly wider on the left side – and has most likely been carved out of the disk by one or more newborn planets that orbit the star. Credit: MPIA (C. Thalmann) & NAOJ

The observations are part of a systematic survey to search for planets and disks around young stars using HiCIAO, a state-of-the-art high-contrast camera designed specifically for this purpose.

Planetary systems like our own share a humble origin as mere by-products of star formation. A newborn star's gravity gathers leftover gas and dust in a dense, flattened disk of matter orbiting the star. Clumps in the disk sweep up more and more material, until their own gravity becomes sufficiently strong to compress them into the dense bodies we know as planets. Recent years have seen substantial advances both in observations (mostly indirect) and in theoretical modeling of such »protoplanetary« disks. The two new observations have added intriguing new details, revealing some structures that had never before been seen directly.

One of the two studies targeted the star LkCa 15, which is located around 450 light-years from Earth in the constellation Taurus. At an age of a few million years, LkCa 15 is a young star – the Sun is a thousand times older. From previous observations of its infrared spectrum and its millimeter emissions, scientists had deduced the presence of a large gap in the center of its protoplanetary disk. The new images show starlight gleaming off the disk surface, clearly outlining the sharp edge of the gap for the first time. Most interestingly, the elliptical shape of the gap is not centered on the star, but appears lopsided.

»The most likely explanation for LkCa 15's disk gap, and in particular its asymmetry, is that one or more planets, freshly born from the disk material, have swept up the gas and dust along their orbits,« says Christian Thalmann, who led the study while on staff at the Max Planck Institute for Astronomy (MPIA). Intriguingly, the disk gap is sufficiently large to accommodate the orbits of all the planets in our own Solar System. It is therefore tempting to speculate that LkCa 15 might be in the process of forming an entire planetary system much like our own. »We haven't detected the planets themselves yet«, adds Thalmann. »But that may change soon.«

The second observation, led by Jun Hashimoto (National Observatory of Japan), targeted the star AB Aur in the constellation Auriga, at a distance of 470 light-years from Earth. This star is even younger, with an age of a mere one million years. The observations were the first to show details down to length scales comparable to the size of our own solar system – for comparison: At a distance of 470 light-years, the solar system has the same apparent size as a 1 Euro coin viewed at a distance of more than 10 km. They show nested rings of material that are tilted with respect to the disk's equatorial plane, and whose material, intriguingly, is not distributed symmetrically around the star – irregular features that indicate the presence of at least one very massive planet.

Both observations where made with the HiCIAO instrument at the 8.2 m SUBARU Telescope. Imaging a disk or planet close to a star is an enormous challenge, as it is very difficult to discern the light emitted by those objects in the star's intense glare. HiCIAO meets this challenge by correcting for the distorting influence of the Earth's atmosphere and by physically blocking out most of the star's light.

The observations are part of the SEEDS project, short for »Strategic Explorations of Exoplanets and Disks with SUBARU«. MPIA's managing director, Thomas Henning, one of the project's co-investigators, explains: »SEEDS is a five-year systematic search for exoplanets and protoplanetary disks. We are thrilled about the images the SUBARU telescope has produced as part of this project. Detailed observations like these are the key to understanding how planetary systems, including our own solar system, came into being.« SEEDS involves more than 100 researchers from 25 astronomical institutions in Asia (NAOJ and others), Europe (MPIA and others), and the US (Princeton University and others).

Contact

Prof. Dr. Thomas Henning (Co-Investigator, SEEDS)
Max Planck Institute for Astronomy, Heidelberg
Phone: (+49|0) 6221 – 528 200
E-Mail: henning@mpia.de
Dr. Markus Pössel (Public Relations)
Max Planck Institute for Astronomy, Heidelberg
Phone: (+49|0) 6221 – 528 261
E-Mail: pr@mpia.de
Background information
The results were published as
Thalmann, C. et al., »Imaging of a Transitional Disk Gap in Reflected Light: Indications of Planet Formation Around the Young Solar Analog LkCa 15« in Astrophysical Journal Letters 718, p. L87-L91

Hashimoto, J. et al., accepted for publication in Astrophysical Journal Letters in January 2011.

The SEEDS project team consists of about 100 researchers from 25 institutions in Japan, Europe and the US as well as in Taiwan. The participating institutions are: in Japan NAOJ, Graduate University of Advanced Studies, University of Air, Hokkaido University, Tohoku University, Ibaraki University, Saitama University, University of Tokyo, Tokyo Institute of Technology, ISAS, Kanagawa University, Nagoya University, Osaka University, Nagoya City College, Kobe University; in Europe: Max Planck Institute for Astronomy (Germany), University of Hertfordshire (UK), Université de Nice-Sophia Antipolis Parc Valrose (France), CSIC-INTA (Spain); in the US: Princeton University, University of Hawaii, NASA/JPL, NASA/Goddard, University of Washington, the College of Carleston; in Taiwan: Academia Sinica Institute of Astronomy and Astrophysics.

The research is supported by a Grant-in-Aid for Specially Promoted Research 22000005 from MEXT (Ministry of Education, Culture, Sports, Science and Technology of Japan).

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://adsabs.harvard.edu/abs/2010ApJ...718L..87T
http://www.mpia.de/Public/menu_q2e.php?Aktuelles/PR/2011/PR110217/PR_110217_en.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>