Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Dimer molecules’ aid study of exoplanet pressure, hunt for life

05.03.2014

Astronomers at the University of Washington have developed a new method of gauging the atmospheric pressure of exoplanets, or worlds beyond the solar system, by looking for a certain type of molecule.

And if there is life out in space, scientists may one day use this same technique to detect its biosignature — the telltale chemical signs of its presence — in the atmosphere of an alien world.


NASA

An artist’s concept of an exoplanet, or planet outside the solar system.

Understanding atmospheric pressure is key to knowing if conditions at the surface of a terrestrial, or rocky, exoplanet might allow liquid water, thus giving life a chance.

The method, devised by Amit Misra, a UW astronomy doctoral student, and co-authors, involves computer simulations of the chemistry of Earth’s own atmosphere that isolate what are called “dimer molecules” — pairs of molecules that tend to form at high pressures and densities in a planet’s atmosphere. There are many types of dimer molecules but this research focused only on those of oxygen. Misra is first author of the paper was published in the February issue of the journal Astrobiology.

The researchers ran simulations testing the spectrum of light in various wavelengths. Dimer molecules absorb light in a distinctive pattern, and the rate at which they form is sensitive to the pressure, or density, in the planet’s atmosphere.

“So the idea is that if we were able to do this for another planet, we could look for this characteristic pattern of absorption from dimer molecules to identify them,” Misra said. The presence of such molecules, he said, likely means the planet has at least one-quarter to one-third the pressure of Earth’s atmosphere.

Powerful telescopes soon to come online, such as the James Webb Space Telescope, scheduled for launch in 2018, may enable astronomers to use this method on distant exoplanets. With such enhanced tools, Misra said, astronomers might detect dimer molecules in actual exoplanet atmospheres, leading to a clear understanding of the planet’s atmosphere.

This research may also play a part in the greatest astronomical quest of all — the ongoing search for life in the cosmos.

That’s because the team realized along the way that oxygen dimer molecules are often more detectable in an atmosphere than other markers of oxygen. That’s important from a biological standpoint, Misra said.

“It’s tied to photosynthesis, and we have pretty good evidence that it’s hard to get a lot of oxygen in an atmosphere unless you have algae or plants that are producing it at a regular rate.

“So if we find a good target planet, and you could detect these dimer molecules — which might be possible within the next 10 to 15 years — that would not only tell you something about pressure, but actually tell you that there’s life on that planet.”

Misra’s UW co-author is Victoria Meadows, professor of astronomy; other co-authors are Mark Claire of Scotland’s University of St. Andrews and Dave Crisp of NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

The research was performed through the UW-based Virtual Planetary Laboratory and funded by NASA (Grant NNH05ZDA001C), as well as a grant from Advancing Science in America, Seattle chapter.

###

For more information, contact Misra at 440-554-6514 or amit0@uw.edu

Peter Kelley | EurekAlert!
Further information:
http://www.uw.edu

Further reports about: Space Telescope astronomy atmosphere conditions pressure spectrum

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>