Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dense hydrogen in a new light

04.06.2013
Hydrogen is the most abundant element in the universe. The way it responds under extreme pressures and temperatures is crucial to our understanding of matter and the nature of hydrogen-rich planets.

New work from Carnegie scientists using intense infrared radiation shines new light on this fundamental material at extreme pressures and reveals the details of a surprising new form of solid hydrogen.

Under normal conditions hydrogen is a gas consisting of diatomic molecules. The hydrogen molecules start to change as the pressure increases. These different forms are called phases and hydrogen has three known solid ones. It has been speculated that at high pressures hydrogen even transforms to a metal, which means it conducts electricity. It could even become a superconductor or a superfluid that never freezes–a completely new and exotic state of matter.

In a new paper published in Physical Review Letters, a team from Carnegie's Geophysical Laboratory examined the structure, bonding and electronic properties of highly compressed hydrogen using intense infrared radiation.

Using a facility maintained by the Geophysical Laboratory at the National Synchrotron Light Source at Brookhaven National Laboratory, the team found the new form to be stable from about 2.2 million times normal atmospheric pressure and about 80 degrees Fahrenheit to at least 3.4 million times atmospheric pressure and about -100 degrees Fahrenheit.

Their experiments revealed that hydrogen takes a form under these conditions that differs remarkably from its other known structures. The new phase has two very different types of hydrogen molecules in its structure. One type of molecule interacts very weakly with its neighboring molecules--unusual for molecules under this type of very high compression. The other type of molecule bonds with its neighbors, forming surprising planar sheets.

The measurements also show that solid hydrogen under these conditions is on the borderline between a semiconductor, like silicon, and a semimetal, like graphite. The results disprove earlier claims that hydrogen forms a dense atomic metal at these pressures and temperatures.

"This simple element–with only one electron and one proton–continues to surprise us with its richness and complexity when it is subjected to high pressures," Russell Hemley, Director of the Geophysical Laboratory, said. "The results provide an important testing ground for fundamental theory."

This research was supported by the NSF. Facilities support was provided by DOE/BES, NSF, and DOE/NNSA.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Russell Hemley | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>