Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dense hydrogen in a new light

04.06.2013
Hydrogen is the most abundant element in the universe. The way it responds under extreme pressures and temperatures is crucial to our understanding of matter and the nature of hydrogen-rich planets.

New work from Carnegie scientists using intense infrared radiation shines new light on this fundamental material at extreme pressures and reveals the details of a surprising new form of solid hydrogen.

Under normal conditions hydrogen is a gas consisting of diatomic molecules. The hydrogen molecules start to change as the pressure increases. These different forms are called phases and hydrogen has three known solid ones. It has been speculated that at high pressures hydrogen even transforms to a metal, which means it conducts electricity. It could even become a superconductor or a superfluid that never freezes–a completely new and exotic state of matter.

In a new paper published in Physical Review Letters, a team from Carnegie's Geophysical Laboratory examined the structure, bonding and electronic properties of highly compressed hydrogen using intense infrared radiation.

Using a facility maintained by the Geophysical Laboratory at the National Synchrotron Light Source at Brookhaven National Laboratory, the team found the new form to be stable from about 2.2 million times normal atmospheric pressure and about 80 degrees Fahrenheit to at least 3.4 million times atmospheric pressure and about -100 degrees Fahrenheit.

Their experiments revealed that hydrogen takes a form under these conditions that differs remarkably from its other known structures. The new phase has two very different types of hydrogen molecules in its structure. One type of molecule interacts very weakly with its neighboring molecules--unusual for molecules under this type of very high compression. The other type of molecule bonds with its neighbors, forming surprising planar sheets.

The measurements also show that solid hydrogen under these conditions is on the borderline between a semiconductor, like silicon, and a semimetal, like graphite. The results disprove earlier claims that hydrogen forms a dense atomic metal at these pressures and temperatures.

"This simple element–with only one electron and one proton–continues to surprise us with its richness and complexity when it is subjected to high pressures," Russell Hemley, Director of the Geophysical Laboratory, said. "The results provide an important testing ground for fundamental theory."

This research was supported by the NSF. Facilities support was provided by DOE/BES, NSF, and DOE/NNSA.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Russell Hemley | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>