Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Data storage: Carbon–ferroelectric memory

Nonvolatile memory based on ferroelectric–graphene field-effect transistors is now a step closer to reality

A fundamental component of a field-effect transistor (FET) is the gate dielectric, which determines the number of charge carriers—electrons or electron vacancies—that can be injected into the active channel of the device.

Graphene has recently become the focus of attention as a viable, high-performance replacement for silicon in FETs, and in recent studies on graphene-based FETs, scientists have investigated the use of thin films of a ferroelectric material for the gate dielectric.

Such films offer several interesting advantages for use in graphene-based FETs: their strong electrical polarization makes it possible to introduce a much higher density of carriers than can be achieved using standard dielectrics, and they have remnant electric polarization—a property that could allow graphene–ferroelectric FETs to be used for nonvolatile memory by storing a certain level of carrier density in the absence of an electrical field.

Two collaborating teams from the A*STAR Institute of Materials Research and Engineering and the National University of Singapore, led by Kui Yao and Barbaros Özylmaz, respectively, previously demonstrated a basic graphene–ferroelectric memory device in which the polarization in the ferroelectric film was controlled by the electrical bias applied to the gate terminal. In that structure, a thin ferroelectric film was deposited on top of a graphene layer, where it injects charge carriers and thus modulates the resistance of the graphene. Unfortunately, however, the two distinct resistance states that could be read as an information bit could only be realized by polarizing and depolarizing the ferroelectric film, which presented problems due to the instability of the depolarization state.

Now, the two teams have collaborated to fabricate an improved device[1] that includes an additional silicon dioxide (SiO2) dielectric gate below the graphene layer (see image). The SiO2 gate, a long-standing component in traditional FETs, effectively provides a reference point from which to measure the effect of ferroelectric gating. By monitoring the resistance of the device as a function of the voltages applied to the top and bottom gates, the researchers developed a quantitative understanding of the performance and switching behavior of graphene–ferroelectric FETs. For use as a nonvolatile memory device, the SiO2 dielectric gate also simplifies bit writing by providing an additional background source of charge carriers, allowing the ferroelectric polarization to be switched between two stable states corresponding to two opposite polarization orientations.

The new device developed by the research team achieved impressive practical results, capable of symmetrical bit writing with a resistance ratio between the two resistance states of over 500% and reproducible nonvolatile switching over 100,000 cycles.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

[1] Zheng, Y. et al. Graphene field effect transistors with ferroelectric gating. Physical Review Letters 105, 166602 (2010).

Lee Swee Heng | Research asia research news
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Make way for the mini flying machines

21.03.2018 | Life Sciences

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>