Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Carbon–ferroelectric memory

24.02.2011
Nonvolatile memory based on ferroelectric–graphene field-effect transistors is now a step closer to reality

A fundamental component of a field-effect transistor (FET) is the gate dielectric, which determines the number of charge carriers—electrons or electron vacancies—that can be injected into the active channel of the device.

Graphene has recently become the focus of attention as a viable, high-performance replacement for silicon in FETs, and in recent studies on graphene-based FETs, scientists have investigated the use of thin films of a ferroelectric material for the gate dielectric.

Such films offer several interesting advantages for use in graphene-based FETs: their strong electrical polarization makes it possible to introduce a much higher density of carriers than can be achieved using standard dielectrics, and they have remnant electric polarization—a property that could allow graphene–ferroelectric FETs to be used for nonvolatile memory by storing a certain level of carrier density in the absence of an electrical field.

Two collaborating teams from the A*STAR Institute of Materials Research and Engineering and the National University of Singapore, led by Kui Yao and Barbaros Özylmaz, respectively, previously demonstrated a basic graphene–ferroelectric memory device in which the polarization in the ferroelectric film was controlled by the electrical bias applied to the gate terminal. In that structure, a thin ferroelectric film was deposited on top of a graphene layer, where it injects charge carriers and thus modulates the resistance of the graphene. Unfortunately, however, the two distinct resistance states that could be read as an information bit could only be realized by polarizing and depolarizing the ferroelectric film, which presented problems due to the instability of the depolarization state.

Now, the two teams have collaborated to fabricate an improved device[1] that includes an additional silicon dioxide (SiO2) dielectric gate below the graphene layer (see image). The SiO2 gate, a long-standing component in traditional FETs, effectively provides a reference point from which to measure the effect of ferroelectric gating. By monitoring the resistance of the device as a function of the voltages applied to the top and bottom gates, the researchers developed a quantitative understanding of the performance and switching behavior of graphene–ferroelectric FETs. For use as a nonvolatile memory device, the SiO2 dielectric gate also simplifies bit writing by providing an additional background source of charge carriers, allowing the ferroelectric polarization to be switched between two stable states corresponding to two opposite polarization orientations.

The new device developed by the research team achieved impressive practical results, capable of symmetrical bit writing with a resistance ratio between the two resistance states of over 500% and reproducible nonvolatile switching over 100,000 cycles.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

[1] Zheng, Y. et al. Graphene field effect transistors with ferroelectric gating. Physical Review Letters 105, 166602 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6275
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>