Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First data released from the Alpha Magnetic Spectrometer

04.04.2013
The first published results from the Alpha Magnetic Spectrometer (AMS), a major physics experiment operating on the International Space Station, were announced today by the AMS collaboration spokesman, Nobel Laureate Samuel Ting.

The result is the most precise measurement to date of the ratio of positrons to electrons in cosmic rays. Measurements of this key ratio may eventually provide the world with our first glimpse into dark matter.

The AMS experiment, developed under the leadership of Professor Ting, with support from the U.S. Department of Energy and fifteen other international partners, is the world's most precise detector of cosmic rays. It was constructed at universities around the world and assembled at the European Organization for Nuclear Research (CERN).

"We are very excited with this first result from AMS," said James Siegrist, DOE Associate Director of Science for High Energy Physics. "We look forward to more important results in the future."

"This result is the first step," said Professor Ting, "the beginning of a series of high precision experimental results from the Alpha Magnetic Spectrometer. This shows that a large international particle physics collaboration can work together to do particle physics in space."

The science goals of AMS include the search for dark matter, antimatter, and new physical phenomena. The detector provides high-precision measurements of cosmic ray particle fluxes, their ratios and gamma rays. From the time of its conception in 1994, U.S. support for the AMS experiment has come from DOE's Office of Science, which provided about $50 million in funding over the life of the program.

This first physics result from AMS is based on 18 months of operation, during which time AMS measured 6,800,000 cosmic ray electrons in the energy range of a half-billion to a trillion electron volts, and over 400,000 positrons (positive electrons), the largest number of energetic antimatter particles directly measured from space. The importance of this measurement is that it could eventually provide a "smoking gun" that certain dark matter particles exist and that dark matter particles and antiparticles are annihilating each other in space.

Although the data do not show a "smoking gun" at this time, this first high-precision (~1% error) measurement of the spectrum has interesting features not seen before that future data may help clarify. With additional data in the coming years, AMS has the potential to shed light on dark matter.

AMS was installed on the Space Station on May 19, 2011 after having been brought into orbit on the last flight of NASA's space shuttle Endeavour under the command of Captain Mark Kelly. Within only hours of its installation on the exterior of the Space Station, AMS became fully operational, and to date has measured over 30 billion cosmic ray events. Working in close cooperation with NASA astronauts and NASA's Johnson Space Center and Marshall Space Flight Center, AMS has maintained a flawless record of performance in the face of a hostile space environment.

Hundreds of scientists, engineers, technicians and students from all over the world have worked together for over 18 years on the AMS collaboration. The collaboration includes scientists from Europe (Finland, France, Germany, Italy, the Netherlands, Portugal, Spain, Switzerland, Romania, Russia, Turkey), Asia (China, Korea, Taiwan), and North America (Mexico and the United States).

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Press Office | EurekAlert!
Further information:
http://science.energy.gov

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>