Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First data released from the Alpha Magnetic Spectrometer

04.04.2013
The first published results from the Alpha Magnetic Spectrometer (AMS), a major physics experiment operating on the International Space Station, were announced today by the AMS collaboration spokesman, Nobel Laureate Samuel Ting.

The result is the most precise measurement to date of the ratio of positrons to electrons in cosmic rays. Measurements of this key ratio may eventually provide the world with our first glimpse into dark matter.

The AMS experiment, developed under the leadership of Professor Ting, with support from the U.S. Department of Energy and fifteen other international partners, is the world's most precise detector of cosmic rays. It was constructed at universities around the world and assembled at the European Organization for Nuclear Research (CERN).

"We are very excited with this first result from AMS," said James Siegrist, DOE Associate Director of Science for High Energy Physics. "We look forward to more important results in the future."

"This result is the first step," said Professor Ting, "the beginning of a series of high precision experimental results from the Alpha Magnetic Spectrometer. This shows that a large international particle physics collaboration can work together to do particle physics in space."

The science goals of AMS include the search for dark matter, antimatter, and new physical phenomena. The detector provides high-precision measurements of cosmic ray particle fluxes, their ratios and gamma rays. From the time of its conception in 1994, U.S. support for the AMS experiment has come from DOE's Office of Science, which provided about $50 million in funding over the life of the program.

This first physics result from AMS is based on 18 months of operation, during which time AMS measured 6,800,000 cosmic ray electrons in the energy range of a half-billion to a trillion electron volts, and over 400,000 positrons (positive electrons), the largest number of energetic antimatter particles directly measured from space. The importance of this measurement is that it could eventually provide a "smoking gun" that certain dark matter particles exist and that dark matter particles and antiparticles are annihilating each other in space.

Although the data do not show a "smoking gun" at this time, this first high-precision (~1% error) measurement of the spectrum has interesting features not seen before that future data may help clarify. With additional data in the coming years, AMS has the potential to shed light on dark matter.

AMS was installed on the Space Station on May 19, 2011 after having been brought into orbit on the last flight of NASA's space shuttle Endeavour under the command of Captain Mark Kelly. Within only hours of its installation on the exterior of the Space Station, AMS became fully operational, and to date has measured over 30 billion cosmic ray events. Working in close cooperation with NASA astronauts and NASA's Johnson Space Center and Marshall Space Flight Center, AMS has maintained a flawless record of performance in the face of a hostile space environment.

Hundreds of scientists, engineers, technicians and students from all over the world have worked together for over 18 years on the AMS collaboration. The collaboration includes scientists from Europe (Finland, France, Germany, Italy, the Netherlands, Portugal, Spain, Switzerland, Romania, Russia, Turkey), Asia (China, Korea, Taiwan), and North America (Mexico and the United States).

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Press Office | EurekAlert!
Further information:
http://science.energy.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>