Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers propose new way to reproduce a black hole

25.08.2009
Despite their popularity in the science fiction genre, there is much to be learned about black holes, the mysterious regions in space once thought to be absent of light.

In a paper published in the August 20 issue of Physical Review Letters, the flagship journal of the American Physical Society, Dartmouth researchers propose a new way of creating a reproduction black hole in the laboratory on a much-tinier scale than their celestial counterparts.

The new method to create a tiny quantum sized black hole would allow researchers to better understand what physicist Stephen Hawking proposed more than 35 years ago: black holes are not totally void of activity; they emit photons, which is now known as Hawking radiation.

"Hawking famously showed that black holes radiate energy according to a thermal spectrum," said Paul Nation, an author on the paper and a graduate student at Dartmouth. "His calculations relied on assumptions about the physics of ultra-high energies and quantum gravity. Because we can't yet take measurements from real black holes, we need a way to recreate this phenomenon in the lab in order to study it, to validate it."

In this paper, the researchers show that a magnetic field-pulsed microwave transmission line containing an array of superconducting quantum interference devices, or SQUIDs, not only reproduces physics analogous to that of a radiating black hole, but does so in a system where the high energy and quantum mechanical properties are well understood and can be directly controlled in the laboratory. The paper states, "Thus, in principle, this setup enables the exploration of analogue quantum gravitational effects."

"We can also manipulate the strength of the applied magnetic field so that the SQUID array can be used to probe black hole radiation beyond what was considered by Hawking," said Miles Blencowe, another author on the paper and a professor of physics and astronomy at Dartmouth.

This is not the first proposed imitation black hole, says Nation. Other proposed analogue schemes have considered using supersonic fluid flows, ultracold bose-einstein condensates and nonlinear fiber optic cables. However, the predicted Hawking radiation in these schemes is incredibly weak or otherwise masked by commonplace radiation due to unavoidable heating of the device, making the Hawking radiation very difficult to detect. "In addition to being able to study analogue quantum gravity effects, the new, SQUID-based proposal may be a more straightforward method to detect the Hawking radiation," says Blencowe.

In addition to Nation and Blencowe, other authors on the paper include Alexander Rimberg at Dartmouth and Eyal Buks at Technion in Haifa, Israel.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>