Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU mathematicians show how shallow water may help explain tsunami power

19.09.2012
While wave watching is a favorite pastime of beachgoers, few notice what is happening in the shallowest water. A closer look by two University of Colorado Boulder applied mathematicians has led to the discovery of interacting X- and Y-shaped ocean waves that may help explain why some tsunamis are able to wreak so much havoc.

Professor Mark Ablowitz and doctoral student Douglas Baldwin repeatedly observed such wave interactions in ankle-deep water at both Nuevo Vallarta, Mexico, and Venice Beach, Calif., in the Pacific Ocean -- interactions that were thought to be very rare but which actually happen every day near low tide. There they saw single, straight waves interacting with each other to form X- and Y-shaped waves as well as more complex wave structures, all predicted by mathematical equations, said Ablowitz.


Understanding the interactions of X- and Y-shaped ocean waves may help explain why some tsunamis are so devastating, say two CU-Boulder mathematicians.

Credit: University of Colorado

When most ocean waves collide, the "interaction height" is the sum of the incoming wave heights, said Baldwin. "But the wave heights that we saw from such interactions were much taller, indicating that they are what we call nonlinear," he said.

Satellite observations of the 2011 tsunami generated by the devastating earthquake that struck Japan indicate there was an X-shaped wave created by the merger of two large waves. "This significantly increased the destructive power of the event," said Ablowitz. "If the interaction had happened at a much greater distance from shore, the devastation could have been even worse as the amplitude could have been even larger. Not every tsunami is strengthened by interacting waves, but when they do intersect there can be a powerful multiplier because of the nonlinearity."

Ablowitz first observed the nonlinear wave action in 2009 while visiting Nuevo Vallarta just north of Puerto Vallarta with his family. He took hundreds of photographs and videos of the peculiar waves over the next several years.

"Unlike most new physics, you can see these interactions without expensive equipment or years of training," said Ablowitz. "A person just needs to go to a flat beach, preferably near a jetty, within a few hours of low tide and know what to look for."

A paper on the subject by Ablowitz and Baldwin was published this month in the journal Physical Review E.

Baldwin, who is studying under Ablowitz, wanted to go the extra mile to verify that the wave interactions observed by his professor were not unique to one beach. In this case he drove more than 1,000 miles to the Los Angeles area "on a whim" to search for the types of waves Ablowitz had observed in Mexico. He hit the jackpot at Venice Beach.

"I don't think there is anything more enjoyable in science than discovering something by chance, predicting something you haven't seen, and then actually seeing what you predicted," said Baldwin.

To see photos and videos of the wave interactions visit http://www.douglasbaldwin.com/nl-waves.html and http://www.markablowitz.com/line-solitons.

Contact:
Mark Ablowitz, 303-492-5502
Mark.Ablowitz@colorado.edu
Douglas Baldwin
Douglas.Baldwin@colorado.edu
Douglas256@gmail.com
Jim Scott, CU media relations, 303-492-3114

Mark Ablowitz | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>