Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many comets originally formed in other solar systems

11.06.2010
Many of the most well known comets in history, including Halley, Hale-Bopp and McNaught, may have been born in orbit around other stars and not the Sun, according to a new study by Queen's University astronomy professor Martin Duncan and an international team of astronomers.

"Anyone who has seen a long tail comet in the night sky may be looking at material from another star," says Professor Duncan.

The researchers used computer simulations to show that the Sun may have captured small icy bodies from its sibling stars while it was in its birth star cluster, and this created a reservoir for observed comets.

Although the Sun currently has no companion stars, it is believed to have formed in a cluster containing hundreds of closely packed stars that were embedded in a dense cloud of gas. During this time, each star formed a large number of small icy bodies (comets) in a disk from which planets formed. Most of these comets were gravitationally slung out of these prenatal planetary systems by the newly forming giant planets, becoming tiny, free-floating members of the cluster.

The Sun's cluster came to an end when its gas was blown out by the hottest young stars. The researchers' computer models show that the Sun then gravitationally captured a large cloud of comets as the cluster dispersed.

"The process of capture is surprisingly efficient and leads to the exciting possibility that the cloud contains a potpourri which samples material from a large number of stellar siblings of the Sun," says Professor Duncan.

Evidence for the team's scenario comes from the roughly spherical cloud of comets (called the Oort cloud) which surrounds the Sun. Exactly how the Oort cloud was created has been a mystery for more than 60 years.

"We have a new model of how the Oort cloud formed. We're not the first to suggest this could happen but we are the first to show it in a detailed computer simulation," adds Professor Duncan.

The research team also included Hal Levison and David Kaufmann (both of Southwest Research Institute in Boulder, CO) and Ramon Brasser (Observatoire de la Cote d'Azur, France). Their findings, "Capture of the Sun's Oort Cloud from Stars in its Birth Cluster" was published today in the online journal Science Express.

Michael Onesi | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>