Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheating to Create the Perfect Simulation

18.01.2013
Physicists of the Jena University (Germany) on the Way to Describe the Inside of Neutron Stars

The planet Earth will die – if not before, then when the Sun collapses. This is going to happen in approximately seven billion years. In the universe however the death of suns and planets is an everyday occurance and our solar system partly consists of their remnants.

The end of stars – suns – rich in mass is often a neutron star. These “stars' liches“ demonstrate a high density, in which atoms are extremely compressed. Such neutron stars are no bigger than a small town, but heavier than our sun, as physicist PD Dr. Axel Maas of the Jena University (Germany) points out. He adds: “The atomic nuclei are very densely packed.“ Compared to atoms, like water, the nuclei of neutron stars are as tightly packed as a bus with 1.000 passengers crowded together in comparison to a bus with only the driver on board. In these densely packed atomic nuclei, so-called “nuclear forces“ are at work. They keep the neutron star together and are responsible for its “eternal life“ – and for the last 35 years the strong nuclear interactions were amongst the greatest challenges of theoretical physics.

Together with colleagues from the Universities of Jena and Darmstadt (both Germany) Axel Maas has succeeded in simulating the strong atomic nuclear interactions to enable its calculability while at the same time preserving the typical characteristics of a neutron star. “It is the first theory for such a tight package,“ the Jena Physicist says. Previously simulations trying to specify the matter inside of neutron stars collapsed far too much in size and yielded the wrong properties time and again – even on the most powerful computers. “These simulations didn't work because there are too many atomic nuclei,“ Maas explains the problem, whose solution the world of physics has come closer to due to the calculations of the Jena researchers. To get there, the scientists did so many calculations at the Loewe Center for Science Computing (CSC) in Frankfurt, that it would have taken a single PC approximately 2.500 years to do the same.

“We weren't able to solve the initial problem either,“ Axel Maas concedes, as algorithms are not (yet) powerful enough. However, the Jena physicist who had been researching this problem since 2007 and his colleagues “reached a new level of quality“. They found a “modification of the theory for such a tight package“, Maas says. And thus they enabled nuclear material to be simulated. Most characteristics of the neutron star are being preserved with the Jena method, but now they enabled its calculability.

The team accomplished this big step forward by intelligently modifying the nuclear forces and by solving the stacking problem of the atoms. That they were at the same time ’cheating a bit‘, the physicists freely admit. However, Maas firmly believes: “We found the best possible shortcut“. Now they know “what is relevant for the original simulation“.

Now this new verifying method is available for numerous questions and theories about neutron stars and very dense atomic nuclei packages. Maas already knows of first groups of scientists who are planning to use the Jena findings to work with them and to carry them further. The scientists involved are already in the process of enlarging the simulation and to verify the results: the results enabling scientists to understand the inside of neutron stars eventually.
Original Publication:
Axel Maas, Lorenz von Smekal, Björn Wellegehausen, Andreas Wipf: The phase diagram of a gauge theory with fermionic baryons, Physical Review D 86, 111901 (Rapid Communication) (2012). This article is available for free online: http://arxiv.org/abs/1203.5653

Contact:
PD Dr. Axel Maas
Institute of Theoretical Physics of University of Jena
Max-Wien-Platz 1
D-07743 Jena
Germany
Phone: +49 (0)3641 / 947124
Email: axel.maas[at]uni-jena.de

Axel Burchardt | idw
Further information:
http://arxiv.org/abs/1203.5653
http://www.uni-jena.de/en/start_en.html

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>