Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheating to Create the Perfect Simulation

18.01.2013
Physicists of the Jena University (Germany) on the Way to Describe the Inside of Neutron Stars

The planet Earth will die – if not before, then when the Sun collapses. This is going to happen in approximately seven billion years. In the universe however the death of suns and planets is an everyday occurance and our solar system partly consists of their remnants.

The end of stars – suns – rich in mass is often a neutron star. These “stars' liches“ demonstrate a high density, in which atoms are extremely compressed. Such neutron stars are no bigger than a small town, but heavier than our sun, as physicist PD Dr. Axel Maas of the Jena University (Germany) points out. He adds: “The atomic nuclei are very densely packed.“ Compared to atoms, like water, the nuclei of neutron stars are as tightly packed as a bus with 1.000 passengers crowded together in comparison to a bus with only the driver on board. In these densely packed atomic nuclei, so-called “nuclear forces“ are at work. They keep the neutron star together and are responsible for its “eternal life“ – and for the last 35 years the strong nuclear interactions were amongst the greatest challenges of theoretical physics.

Together with colleagues from the Universities of Jena and Darmstadt (both Germany) Axel Maas has succeeded in simulating the strong atomic nuclear interactions to enable its calculability while at the same time preserving the typical characteristics of a neutron star. “It is the first theory for such a tight package,“ the Jena Physicist says. Previously simulations trying to specify the matter inside of neutron stars collapsed far too much in size and yielded the wrong properties time and again – even on the most powerful computers. “These simulations didn't work because there are too many atomic nuclei,“ Maas explains the problem, whose solution the world of physics has come closer to due to the calculations of the Jena researchers. To get there, the scientists did so many calculations at the Loewe Center for Science Computing (CSC) in Frankfurt, that it would have taken a single PC approximately 2.500 years to do the same.

“We weren't able to solve the initial problem either,“ Axel Maas concedes, as algorithms are not (yet) powerful enough. However, the Jena physicist who had been researching this problem since 2007 and his colleagues “reached a new level of quality“. They found a “modification of the theory for such a tight package“, Maas says. And thus they enabled nuclear material to be simulated. Most characteristics of the neutron star are being preserved with the Jena method, but now they enabled its calculability.

The team accomplished this big step forward by intelligently modifying the nuclear forces and by solving the stacking problem of the atoms. That they were at the same time ’cheating a bit‘, the physicists freely admit. However, Maas firmly believes: “We found the best possible shortcut“. Now they know “what is relevant for the original simulation“.

Now this new verifying method is available for numerous questions and theories about neutron stars and very dense atomic nuclei packages. Maas already knows of first groups of scientists who are planning to use the Jena findings to work with them and to carry them further. The scientists involved are already in the process of enlarging the simulation and to verify the results: the results enabling scientists to understand the inside of neutron stars eventually.
Original Publication:
Axel Maas, Lorenz von Smekal, Björn Wellegehausen, Andreas Wipf: The phase diagram of a gauge theory with fermionic baryons, Physical Review D 86, 111901 (Rapid Communication) (2012). This article is available for free online: http://arxiv.org/abs/1203.5653

Contact:
PD Dr. Axel Maas
Institute of Theoretical Physics of University of Jena
Max-Wien-Platz 1
D-07743 Jena
Germany
Phone: +49 (0)3641 / 947124
Email: axel.maas[at]uni-jena.de

Axel Burchardt | idw
Further information:
http://arxiv.org/abs/1203.5653
http://www.uni-jena.de/en/start_en.html

More articles from Physics and Astronomy:

nachricht Theory of the strong interaction verified
27.03.2015 | Forschungszentrum Juelich

nachricht Dark matter even darker than once thought
27.03.2015 | ESA/Hubble Information Centre

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>