Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheating to Create the Perfect Simulation

18.01.2013
Physicists of the Jena University (Germany) on the Way to Describe the Inside of Neutron Stars

The planet Earth will die – if not before, then when the Sun collapses. This is going to happen in approximately seven billion years. In the universe however the death of suns and planets is an everyday occurance and our solar system partly consists of their remnants.

The end of stars – suns – rich in mass is often a neutron star. These “stars' liches“ demonstrate a high density, in which atoms are extremely compressed. Such neutron stars are no bigger than a small town, but heavier than our sun, as physicist PD Dr. Axel Maas of the Jena University (Germany) points out. He adds: “The atomic nuclei are very densely packed.“ Compared to atoms, like water, the nuclei of neutron stars are as tightly packed as a bus with 1.000 passengers crowded together in comparison to a bus with only the driver on board. In these densely packed atomic nuclei, so-called “nuclear forces“ are at work. They keep the neutron star together and are responsible for its “eternal life“ – and for the last 35 years the strong nuclear interactions were amongst the greatest challenges of theoretical physics.

Together with colleagues from the Universities of Jena and Darmstadt (both Germany) Axel Maas has succeeded in simulating the strong atomic nuclear interactions to enable its calculability while at the same time preserving the typical characteristics of a neutron star. “It is the first theory for such a tight package,“ the Jena Physicist says. Previously simulations trying to specify the matter inside of neutron stars collapsed far too much in size and yielded the wrong properties time and again – even on the most powerful computers. “These simulations didn't work because there are too many atomic nuclei,“ Maas explains the problem, whose solution the world of physics has come closer to due to the calculations of the Jena researchers. To get there, the scientists did so many calculations at the Loewe Center for Science Computing (CSC) in Frankfurt, that it would have taken a single PC approximately 2.500 years to do the same.

“We weren't able to solve the initial problem either,“ Axel Maas concedes, as algorithms are not (yet) powerful enough. However, the Jena physicist who had been researching this problem since 2007 and his colleagues “reached a new level of quality“. They found a “modification of the theory for such a tight package“, Maas says. And thus they enabled nuclear material to be simulated. Most characteristics of the neutron star are being preserved with the Jena method, but now they enabled its calculability.

The team accomplished this big step forward by intelligently modifying the nuclear forces and by solving the stacking problem of the atoms. That they were at the same time ’cheating a bit‘, the physicists freely admit. However, Maas firmly believes: “We found the best possible shortcut“. Now they know “what is relevant for the original simulation“.

Now this new verifying method is available for numerous questions and theories about neutron stars and very dense atomic nuclei packages. Maas already knows of first groups of scientists who are planning to use the Jena findings to work with them and to carry them further. The scientists involved are already in the process of enlarging the simulation and to verify the results: the results enabling scientists to understand the inside of neutron stars eventually.
Original Publication:
Axel Maas, Lorenz von Smekal, Björn Wellegehausen, Andreas Wipf: The phase diagram of a gauge theory with fermionic baryons, Physical Review D 86, 111901 (Rapid Communication) (2012). This article is available for free online: http://arxiv.org/abs/1203.5653

Contact:
PD Dr. Axel Maas
Institute of Theoretical Physics of University of Jena
Max-Wien-Platz 1
D-07743 Jena
Germany
Phone: +49 (0)3641 / 947124
Email: axel.maas[at]uni-jena.de

Axel Burchardt | idw
Further information:
http://arxiv.org/abs/1203.5653
http://www.uni-jena.de/en/start_en.html

More articles from Physics and Astronomy:

nachricht Light-emitting bubbles captured in the wild
28.02.2017 | Georg-August-Universität Göttingen

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>