Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN Experiment Traps Antimatter Atoms for 1000 Seconds

07.06.2011
In a paper published online by the journal Nature Physics today, the ALPHA experiment at CERN[1] reports that it has succeeded in trapping antimatter atoms for over 16 minutes: long enough to begin to study their properties in detail. ALPHA is part of a broad programme at CERN’s antiproton decelerator (AD)[2] investigating the mysteries of one of nature’s most elusive substances.

Today, we live in a universe apparently made entirely of matter, yet at the big bang matter and antimatter would have existed in equal quantities. Nature seems to have a slight preference for matter, which allows our universe and everything in it to exist. One way of investigating nature’s preference for matter is to compare hydrogen atoms with their antimatter counterparts, and that’s what makes today’s result important.

“We can keep the antihydrogen atoms trapped for 1000 seconds,” explained ALPHA spokesperson Jeffrey Hangst of Aarhus University. “This is long enough to begin to study them - even with the small number that we can catch so far.”

In the paper published today, some 300 trapped antiatoms are reported to have been studied. The trapping of antiatoms will allow antihydrogen to be mapped precisely using laser or microwave spectroscopy so that it can be compared to the hydrogen atom, which is among the best-known systems in physics. Any difference should become apparent under careful scrutiny. Trapping antiatoms could also provide a complementary approach to measuring the influence of gravity on antimatter, which will soon be investigated with antihydrogen by the AEgIS experiment.

Another important consequence of trapping antihydrogen for long periods is that the antiatoms have time to relax into their ground state, which will allow ALPHA to conduct the precision measurements necessary to investigate a symmetry known as CPT. Symmetries in physics describe how processes look under certain transformations. C, for example, involves swapping the electric charges of the particles involved in the process. P is like looking in the mirror, while T involves reversing the arrow of time.

Individually, each of these symmetries is broken – processes do not always look the same. CPT, however, says that a particle moving forward through time in our universe should be indistinguishable from an antiparticle moving backwards through time in a mirror universe, and it is thought to be perfectly respected by nature. CPT symmetry requires that hydrogen and antihydrogen have identical spectra.

“Any hint of CPT symmetry breaking would require a serious rethink of our understanding of nature,” said Hangst. “But half of the universe has gone missing, so some kind of rethink is apparently on the agenda. ”

The next step for ALPHA is to start performing measurements on trapped antihydrogen, and this is due to get underway later this year. The first step is to illuminate the trapped anti-atoms with microwaves, to determine if they absorb exactly the same frequencies (or energies) as their matter cousins.

“If you hit the trapped antihydrogen atoms with just the right microwave frequency, they will escape from the trap, and we can detect the annihilation – even for just a single atom,” explained Hangst. “This would provide the first ever look inside the structure of antihydrogen – element number 1 on the anti-periodic table.”

Contacts:
On Sunday, contact James Gillies, Head of communication
+41 76 487 45 55
As of Monday, contact CERN Press Office, press.office@cern.ch
+41 22 767 34 32
+41 22 767 21 41
For pictures see here:
http://cdsweb.cern.ch/record/1307522
http://cdsweb.cern.ch/record/1349934
For footage see here:
http://www.youtube.com/watch?v=2WN-zk_giKw
(if you click on “Show more” you will see the dope sheet accompanying this video)

Follow CERN at:

www.cern.ch
http://twitter.com/cern/
http://www.youtube.com/user/CERNTV
http://www.quantumdiaries.org/
[1] CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. One candidate for accession: Romania.

India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

[2] ALPHA is one of several AD experiments investigating antimatter at CERN. ATRAP has pioneered trapping techniques, and is also investigating antihydrogen. ASACUSA has made measurements of unprecedented precision of the antiproton’s mass, so far not revealing any divergence from that of the proton. ASACUSA is also developing complementary techniques for studying antihydrogen. AEgIS studies how antiprotons fall under gravity, and ACE investigates the potential use of antiprotons for cancer therapy.

James Gillies | Newswise Science News
Further information:
http://www.cern.ch

Further reports about: ASACUSA Alpha CERN CPT Lobster Traps Nature Immunology Nuclear Research hydrogen atom

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>