Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CEBAF Beam Goes Over the Hump - Highest-Energy Beam Ever Delivered at Jefferson Lab

15.05.2014

The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has achieved the final two accelerator commissioning milestones needed for approval to start experimental operations following its first major upgrade.

In the early hours of May 7, the machine delivered its highest-energy beams ever, 10.5 billion electron-volts (10.5 GeV) through the entire accelerator and up to the start of the beamline for its newest experimental complex, Hall D. Then, in the last minutes of the day on May 7, the machine delivered beam, for the first time, into Hall D.


The new beamline connecting the accelerator to Hall D rises 5 meters before entering the Hall D complex.

In addressing staff, Jefferson Lab Director Hugh Montgomery praised the efforts of the many Jefferson Lab staff members who made the accomplishment a reality, “It's really appreciated the way you have worked together and, in particular, the safe way in which you have pulled this off,” he said.

The CEBAF accelerator is based on superconducting radiofrequency (SRF) technology and produces a stream of charged electrons that scientists use to probe the nucleus of the atom. CEBAF was the first large-scale application of SRF technology in the U.S., and it is the world's most advanced particle accelerator for investigating the quark structure of the atom's nucleus. CEBAF was originally designed to operate at 4 GeV, and it reached 6 GeV, or 6 billion electron volts in its original configuration.

The 12 GeV Upgrade is a $338 million project to double CEBAF's maximum operational energy and includes the construction of the fourth experimental hall, as well as upgrades to equipment in the existing halls.

On May 7, 10.5 GeV beam was delivered to the Hall D Tagger Facility, which converts CEBAF's electron beam into photons that will be used for experiments in Hall D. To deliver the beam to the Tagger Facility, operators steered it through a newly installed beamline that rises 5 meters, more than 16 feet, as it approaches the Tagger Facility.

"With this accomplished, the beamline elements from the photocathode that generates the electrons through 5.5 passes of the CEBAF racetrack and the new Hall D electron beamline have gloriously transported beam!" said Arne Freyberger, Accelerator Operations manager. "This is not luck. This is a direct reflection of the quality of the staff."

Leigh Harwood, 12 GeV Upgrade project lead for Accelerator, concurred, "The 12 GeV Upgrade project team thanks you for your dedication and the hard work that got us to this moment."

In addition to setting a new energy record for beam in CEBAF, these significant accomplishments complete two of the major 12 GeV Project milestones necessary for Jefferson Lab to be granted the next DOE approval step, Critical Decision-4A (Accelerator Project Completion and Start of Operations).

These two accomplishments build on others. On Feb. 5, accelerator operators sent streams of electrons around the CEBAF accelerator once and achieved full upgrade-energy acceleration of 2.2 GeV in one pass. Then they ran the accelerator at this specification for the next eight hours, achieving 50 percent availability on their first run of the machine at design specifications. On April 1, the CEBAF accelerator delivered electron beams into a target in an experimental hall, recording the first data of the 12 GeV era. The machine sent electrons around the racetrack three times (known as “3-pass” beam), resulting in 6.11 GeV electrons at 2 nanoAmps average current for more than an hour. On May 3, the first beam, with energy of 6.18 GeV, was delivered to the front section of the beamline to Hall D, thus demonstrating that all 5.5 passes of the accelerator were functional and there were no obstructions in the way of the beam. With 5.5 passes functional, CEBAF energy was scaled to 10.5 GeV to achieve these last two milestones.

DOE approval of Critical Decision 4A will permit accelerator operators to continue commissioning the accelerator in order to achieve full 12 GeV energy and to send electron beams to Jefferson Lab's experimental halls for commissioning and the start of experiments.

Jefferson Science Associates, LLC, a joint venture of the Southeastern Universities Research Association, Inc. and PAE Applied Technologies, manages and operates the Thomas Jefferson National Accelerator Facility, or Jefferson Lab, for the U.S. Department of Energy's Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Contact: Kandice Carter, Jefferson Lab Public Affairs, 757-269-7263, kcarter@jlab.org

Kandice Carter | Eurek Alert!
Further information:
https://www.jlab.org/news/releases/cebaf-beam-goes-over-hump-highest-energy-beam-ever-delivered-jefferson-lab

Further reports about: Accelerator Beam Facility Highest-Energy Beam Lab beamline energy

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>