Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CEBAF Beam Goes Over the Hump - Highest-Energy Beam Ever Delivered at Jefferson Lab


The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has achieved the final two accelerator commissioning milestones needed for approval to start experimental operations following its first major upgrade.

In the early hours of May 7, the machine delivered its highest-energy beams ever, 10.5 billion electron-volts (10.5 GeV) through the entire accelerator and up to the start of the beamline for its newest experimental complex, Hall D. Then, in the last minutes of the day on May 7, the machine delivered beam, for the first time, into Hall D.

The new beamline connecting the accelerator to Hall D rises 5 meters before entering the Hall D complex.

In addressing staff, Jefferson Lab Director Hugh Montgomery praised the efforts of the many Jefferson Lab staff members who made the accomplishment a reality, “It's really appreciated the way you have worked together and, in particular, the safe way in which you have pulled this off,” he said.

The CEBAF accelerator is based on superconducting radiofrequency (SRF) technology and produces a stream of charged electrons that scientists use to probe the nucleus of the atom. CEBAF was the first large-scale application of SRF technology in the U.S., and it is the world's most advanced particle accelerator for investigating the quark structure of the atom's nucleus. CEBAF was originally designed to operate at 4 GeV, and it reached 6 GeV, or 6 billion electron volts in its original configuration.

The 12 GeV Upgrade is a $338 million project to double CEBAF's maximum operational energy and includes the construction of the fourth experimental hall, as well as upgrades to equipment in the existing halls.

On May 7, 10.5 GeV beam was delivered to the Hall D Tagger Facility, which converts CEBAF's electron beam into photons that will be used for experiments in Hall D. To deliver the beam to the Tagger Facility, operators steered it through a newly installed beamline that rises 5 meters, more than 16 feet, as it approaches the Tagger Facility.

"With this accomplished, the beamline elements from the photocathode that generates the electrons through 5.5 passes of the CEBAF racetrack and the new Hall D electron beamline have gloriously transported beam!" said Arne Freyberger, Accelerator Operations manager. "This is not luck. This is a direct reflection of the quality of the staff."

Leigh Harwood, 12 GeV Upgrade project lead for Accelerator, concurred, "The 12 GeV Upgrade project team thanks you for your dedication and the hard work that got us to this moment."

In addition to setting a new energy record for beam in CEBAF, these significant accomplishments complete two of the major 12 GeV Project milestones necessary for Jefferson Lab to be granted the next DOE approval step, Critical Decision-4A (Accelerator Project Completion and Start of Operations).

These two accomplishments build on others. On Feb. 5, accelerator operators sent streams of electrons around the CEBAF accelerator once and achieved full upgrade-energy acceleration of 2.2 GeV in one pass. Then they ran the accelerator at this specification for the next eight hours, achieving 50 percent availability on their first run of the machine at design specifications. On April 1, the CEBAF accelerator delivered electron beams into a target in an experimental hall, recording the first data of the 12 GeV era. The machine sent electrons around the racetrack three times (known as “3-pass” beam), resulting in 6.11 GeV electrons at 2 nanoAmps average current for more than an hour. On May 3, the first beam, with energy of 6.18 GeV, was delivered to the front section of the beamline to Hall D, thus demonstrating that all 5.5 passes of the accelerator were functional and there were no obstructions in the way of the beam. With 5.5 passes functional, CEBAF energy was scaled to 10.5 GeV to achieve these last two milestones.

DOE approval of Critical Decision 4A will permit accelerator operators to continue commissioning the accelerator in order to achieve full 12 GeV energy and to send electron beams to Jefferson Lab's experimental halls for commissioning and the start of experiments.

Jefferson Science Associates, LLC, a joint venture of the Southeastern Universities Research Association, Inc. and PAE Applied Technologies, manages and operates the Thomas Jefferson National Accelerator Facility, or Jefferson Lab, for the U.S. Department of Energy's Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit

Contact: Kandice Carter, Jefferson Lab Public Affairs, 757-269-7263,

Kandice Carter | Eurek Alert!
Further information:

Further reports about: Accelerator Beam Facility Highest-Energy Beam Lab beamline energy

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>