Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can we see the arrow of time?

20.06.2014

Algorithm can determine, with 80 percent accuracy, whether video is running forward or backward

Einstein's theory of relativity envisions time as a spatial dimension, like height, width, and depth. But unlike those other dimensions, time seems to permit motion in only one direction: forward. This directional asymmetry — the "arrow of time" — is something of a conundrum for theoretical physics.

But is it something we can see?

An international group of computer scientists believes that the answer is yes. At the IEEE Conference on Computer Vision and Pattern Recognition this month, they'll present a new algorithm that can, with roughly 80 percent accuracy, determine whether a given snippet of video is playing backward or forward.

"If you see that a clock in a movie is going backward, that requires a high-level understanding of how clocks normally move," says William Freeman, a professor of computer science and engineering at MIT and one of the paper's authors. "But we were interested in whether we could tell the direction of time from low-level cues, just watching the way the world behaves."

By identifying subtle but intrinsic characteristics of visual experience, the research could lead to more realistic graphics in gaming and film. But Freeman says that that wasn't the researchers' primary motivation.

"It's kind of like learning what the structure of the visual world is," he says. "To study shape perception, you might invert a photograph to make everything that's black white, and white black, and then check what you can still see and what you can't. Here we're doing a similar thing, by reversing time, then seeing what it takes to detect that change. We're trying to understand the nature of the temporal signal."

Word perfect

Freeman and his collaborators — his students Donglai Wei and YiChang Shih; Lyndsey Pickup and Andrew Zisserman from Oxford University; Changshui Zhang and Zheng Pan of Tsinghua University; and Bernhard Schölkopf of the Max Planck Institute for Intelligent Systems in Tübingen, Germany — designed candidate algorithms that approached the problem in three different ways. All three algorithms were trained on a set of short videos that had been identified in advance as running either forward or backward.

The algorithm that performed best begins by dividing a frame of video into a grid of hundreds of thousands of squares; then it divides each of those squares into a smaller, four-by-four grid. For each square in the smaller grid, it determines the direction and distance that clusters of pixels move from one frame to the next.

The algorithm then generates a "dictionary" of roughly 4,000 four-by-four grids, where each square in a grid represents particular directions and degrees of motion. The 4,000-odd "words" in the dictionary are chosen to offer a good approximation of all the grids in the training data. Finally, the algorithm combs through the labeled examples to determine whether particular combinations of "words" tend to indicate forward or backward motion.

Following standard practice in the field, the researchers divided their training data into three sets, sequentially training the algorithm on two of the sets and testing its performance against the third. The algorithm's success rates were 74 percent, 77 percent, and 90 percent.

One vital aspect of the algorithm is that it can identify the specific regions of a frame that it is using to make its judgments. Examining the words that characterize those regions could reveal the types of visual cues that the algorithm is using — and perhaps the types of cues that the human visual system uses as well.

The next-best-performing algorithm was about 70 percent accurate. It was based on the assumption that, in forward-moving video, motion tends to propagate outward rather than contracting inward. In video of a break in pool, for instance, the cue ball is, initially, the only moving object. After it strikes the racked balls, motion begins to appear in a wider and wider radius from the point of contact.

Probable cause

The third algorithm was the least accurate, but it may be the most philosophically interesting. It attempts to offer a statistical definition of the direction of causation.

"There's a research area on causality," Freeman says. "And that's actually really quite important, medically even, because in epidemiology, you can't afford to run the experiment twice, to have people experience this problem and see if they get it and have people do that and see if they don't. But you see things that happen together and you want to figure out: 'Did one cause the other?' There's this whole area of study within statistics on, 'How can you figure out when something did cause something else?' And that relates in an indirect way to this study as well."

Suppose that, in a video, a ball is rolling down a ramp and strikes a bump that briefly launches it into the air. When the video is playing in the forward direction, the sudden change in the ball's trajectory coincides with a visual artifact: the bump. When it's playing in reverse, the ball suddenly leaps for no reason. The researchers were able to model that intuitive distinction as a statistical relationship between a mathematical model of an object's motion and the "noise," or error, in the visual signal.

Unfortunately, the approach works only if the object's motion can be described by a linear equation, and that's rarely the case with motions involving human agency. The algorithm can determine, however, whether the video it's being applied to meets that criterion. And in those cases, its performance is much better.

###

Written by Larry Hardesty, MIT News Office

Abby Abazorius | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: Einstein's theory MIT algorithm depth directional spatial dimensions

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>