Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech scientists predict greater longevity for planets with life

16.06.2009
Billion-year life extension for Earth also doubles the odds that advanced life will be found elsewhere in the universe

Roughly a billion years from now, the ever-increasing radiation from the sun will have heated Earth into inhabitability; the carbon dioxide in the atmosphere that serves as food for plant life will disappear, pulled out by the weathering of rocks; the oceans will evaporate; and all living things will disappear.

Or maybe not quite so soon, say researchers from the California Institute of Technology (Caltech), who have come up with a mechanism that doubles the future lifespan of the biosphere—while also increasing the chance that advanced life will be found elsewhere in the universe.

A paper describing their hypothesis was published June 1 in the early online edition of the Proceedings of the National Academy of Sciences (PNAS).

Earth maintains its surface temperatures through the greenhouse effect. Although the planet's greenhouse gases—chiefly water vapor, carbon dioxide, and methane—have become the villain in global warming scenarios, they're crucial for a habitable world, because they act as an insulating blanket in the atmosphere that absorbs and radiates thermal radiation, keeping the surface comfortably warm.

As the sun has matured over the past 4.5 billion years, it has become both brighter and hotter, increasing the amount of solar radiation received by Earth, along with surface temperatures. Earth has coped by reducing the amount of carbon dioxide in the atmosphere, thus reducing the warming effect. (Despite current concerns about rising carbon dioxide levels triggering detrimental climate change, the pressure of carbon dioxide in the atmosphere has dropped some 2,000-fold over the past 3.5 billion years; modern, man-made increases in atmospheric carbon dioxide offset a fraction of this overall decrease.)

The problem, says Joseph L. Kirschvink, the Nico and Marilyn Van Wingen Professor of Geobiology at Caltech and a coauthor of the PNAS paper, is that "we're nearing the point where there's not enough carbon dioxide left to regulate temperatures following the same procedures."

Kirschvink and his collaborators Yuk L. Yung, a Caltech professor of planetary science, and graduate students King-Fai Li and Kaveh Pahlevan, say that the solution is to reduce substantially the total pressure of the atmosphere itself, by removing massive amounts of molecular nitrogen, the largely nonreactive gas that makes up about 78 percent of the atmosphere. This would regulate the surface temperatures and allow carbon dioxide to remain in the atmosphere, to support life, and could tack an additional 1.3 billion years onto Earth's expected lifespan.

In the "blanket" analogy for greenhouse gases, carbon dioxide would be represented by the cotton fibers making up the blanket. "The cotton weave may have holes, which allow heat to leak out," explains Li, the lead author of the paper.

"The size of the holes is controlled by pressure," Yung says. "Squeeze the blanket," by increasing the atmospheric pressure, "and the holes become smaller, so less heat can escape. With less pressure, the holes become larger, and more heat can escape," he says, helping the planet to shed the extra heat generated by a more luminous sun.

Strikingly, no external influence would be necessary to take nitrogen out of the air, the scientists say. Instead, the biosphere itself would accomplish this, because nitrogen is incorporated into the cells of organisms as they grow, and is buried with them when they die.

In fact, "This reduction of nitrogen is something that may already be happening," says Pahlevan, and that has occurred over the course of Earth's history. This suggests that Earth's atmospheric pressure may be lower now than it was earlier in the planet's history.

Proof of this hypothesis may come from other research groups that are examining the gas bubbles formed in ancient lavas to determine past atmospheric pressure: the maximum size of a forming bubble is constrained by the amount of atmospheric pressure, with higher pressures producing smaller bubbles, and vice versa.

If true, the mechanism also would potentially occur on any extrasolar planet with an atmosphere and a biosphere.

"Hopefully, in the future we will not only detect Earth-like planets around other stars but learn something about their atmospheres and the ambient pressures," Pahlevan says. "And if it turns out that older planets tend to have thinner atmospheres, it would be an indication that this process has some universality."

Adds Yung: "We can't wait for the experiment to occur on Earth. It would take too long. But if we study exoplanets, maybe we will see it. Maybe the experiment has already been done."

Increasing the lifespan of our biosphere—from roughly 1 billion to 2.3 billion years—has intriguing implications for the search for life elsewhere in the universe. The length of the existence of advanced life is a variable in the Drake equation, astronomer Frank Drake's famous formula for estimating the number of intelligent extraterrestrial civilizations in the galaxy. Doubling the duration of Earth's biosphere effectively doubles the odds that intelligent life will be found elsewhere in the galaxy.

"It didn't take very long to produce life on the planet, but it takes a very long time to develop advanced life," says Yung. On Earth, this process took four billion years. "Adding an additional billion years gives us more time to develop, and more time to encounter advanced civilizations, whose own existence might be prolonged by this mechanism. It gives us a chance to meet."

The work described in the paper, "Atmospheric Pressure as a Natural Regulator of the Climate of a Terrestrial Planet with Biosphere," was funded by NASA and the Virtual Planetary Laboratory at Caltech.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>