Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CALIFA survey publishes intimate details of 100 galaxies

31.10.2012
The Calar Alto Legacy Integral Field Area survey (CALIFA survey) has published a first set of data, offering views of one hundred galaxies in the local Universe at an unprecedented level of detail.

The new data represent the first large-scale effort at "two plus one" mapping of galaxies: for every pixel within each two-dimensional image, a detailed ("spectral") analysis can be performed, providing information about dynamics and chemical composition. These, in turn, yield key information that will allow scientists to reconstruct the structure and dynamics of galaxies, as well as their evolution over time.


The CALIFA Survey will provide detailed information about 600 galaxies in the local Universe. This image shows two examples: The quiescent elliptical galaxy NGC 6125 (top) and the spiral galaxy NGC 2916, in which stars are still forming (bottom). For each galaxy, an image taken by an earlier survey (SDSS) is seen on the left. The image on the right shows CALIFA data about whether or not that part of the galaxy is moving towards us (blueish colors) or away from us (reddish colors). The elliptical galaxy is rotating very gently. In the spiral galaxy, on the other hand, the stars rotate with speeds of up to 180 kilometres per second or more.
Credit: CALIFA-Team / M. Lyubenova (MPIA)

Galaxies are the large-scale building blocks of the cosmos. Their visible ingredients include between millions and hundreds of billions of stars as well as clouds of gas and dust. "Understanding the dynamical processes within and between galaxies that have shaped the way they are today is a key part of understanding our wider cosmic environment.", explains Dr. Glenn van de Ven, a member of the managing board of the CALIFA survey and staff scientist at the Max Planck Institute for Astronomy (MPIA).

Traditionally, when it came to galaxies, astronomers had to choose between different observational techniques. They could, for instance, take detailed images with astronomical cameras showing the various features of a galaxy as well as their spatial relations, but they could not at the same time perform detailed analyses of the galaxy's light, that is "obtain a galaxy spectrum". Taking spectra required a different kind of instrument known as a spectrograph, which, as a downside, would only provide very limited information about the galaxy's spatial structure.

An increasingly popular observational technique, integral field spectroscopy (IFS), combines the best of both worlds. The IFS instrument PMAS mounted at the Calar Alto Observatory's 3.5 metre telescope uses 350 optical fibres to guide light from a corresponding number of different regions of a galaxy image into a spectrograph. In this way, astronomers are not restricted to analysing the galaxy as a whole – they can analyse the light coming from many different specific parts of a galaxy. The result are detailed maps of galaxy properties such as their chemical composition, and of the motions of their stars and their gas.

For the CALIFA survey, more than 900 galaxies in the local Universe, namely at distances between 70 and 400 million light years from the Milky Way, were selected from the northern sky to fully fit into the field-of-view of PMAS. They include all possible types, from roundish elliptical to majestic spiral galaxies, similar to our own Milky Way and the Andromeda galaxy. The allocated observation time will allow for around 600 of the pre-selected galaxies to be observed in depth.

The resulting data could revolutionize astronomers' understanding of galactic dynamics. Dr. Knud Jahnke, one of the co-founding members of the CALIFA project, is excited about one possibility in particular: "Large amounts of gas in these galaxies are being ionized – intense radiation is stripping the gas's atoms of electrons. CALIFA allows us to study these processes in unprecedented detail." With surprising consequences, as graduate student Robert Singh adds: "For the past 30 years, astronomers thought they understood the origin of this ionizing radiation. But our initial analysis strongly suggests that the standard paradigm is wrong."

"Even the mysterious dark matter in these galaxies can no longer evade detection", adds Dr. Mariya Lyubenova, a postdoctoral research fellow at MPIA. Dark matter accounts for roughly 20% of the total energy content of the Universe, but its exact distribution within distant galaxies is difficult to determine. However, whereas dark matter cannot be seen directly, its gravitational attraction influences the motions of a galaxy's stars and gas. CALIFA will be able to track these motions with great precision, allowing the galaxy's dark matter distribution to be uncovered.

It is important to note that CALIFA is a legacy survey: all of its data will become freely available online to be used by scientists world-wide. The data on an initial set of 100 galaxies are now being released. CALIFA is the first IFS study to be explicitly designed as a legacy project and, upon completion, it will be the largest survey of this kind ever accomplished.

Contact information

Glenn van de Ven (member, CALIFA managing board)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 275
Email: glenn@mpia.de
Knud Jahnke (co-founding member, CALIFA)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 398
Email: jahnke@mpia.de
Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2e.php?Aktuelles/PR/2012/PR121031/PR_121031_en.html

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>