Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bring a 50,000-degree plasma into your living room

13.11.2013
An online open-user experiment puts users in control of a real physics laboratory

With the rise of online open course platforms such as Khan Academy, MIT OpenCourseWare and iTunes U, it has never been easier to teach yourself everything from American history to semiconductor manufacturing.


Remote users can operate a plasma experiment with a set of controls, shown on the left side of the screen, and watch the effect on the apparatus at PPPL using the web stream video,

Credit: A. Dominguez and A. Zwicker

These courses enable students to advance at their own pace while accessing the limitless resources available on the internet for supplemental material.

But there's a glaring exception to this cornucopia of courseware: Online physics classes that enable students to interact with a real physical experiment. While excellent online sites like Phet Interactive Simulations have developed virtual labs that simulate laboratory environments, there is no substitute for actual live experiments.

At the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), we've developed software for an experiment that can be observed and controlled from anywhere in the world.

The user can operate the experiment with a set of controls, shown on the left side of the screen, and watch the effect on the apparatus at PPPL using the web stream video, shown on the right. This "Remote Glow Discharge Experiment (RGDX)" consists of three main components:

A live-streaming video that constantly observes an experimental apparatus housed at PPPL.

A set of online controls.

Information that explains what the user observes and controls, plus more in-depth resources that explore plasma and its uses.

The RGDX consists of a hollow glass tube with air held under vacuum. Supplying a voltage of up to 2000V generates a glow discharge within. The user has control of the pressure inside the tube, the voltage supplied to the plasma and of the strength of an electromagnet surrounding the tube. Users are guided through steps that gradually increase their level of engagement and introduce them to new physical concepts and topics. If the user is interested in the physics behind the voltages, pressures and magnets, further explanations are given for each topic.

Audiences for the RGDX can range from someone simply interested in controlling a physical apparatus from afar, to an undergraduate or graduate student who wants to study phenomena such as instabilities in plasma or the physics behind plasma breakdown voltages. The RGDX can be used as a novel experimental component of either an online or in-class physics course, and the software can be adapted to a wide array of experiments.

Research Contacts:

A. Dominguez, (609) 243-2568, arturod@pppl.gov
A. Zwicker, (609) 243-2150, azwicker@pppl.gov
Abstracts:
JP8.00006 Remote control of a DC discharge experiment
Session JP8: Poster Session IV: Education and Outreach, MHD, Alpha
Heating & Computational Methods
2:00 PM-5:00 PM, Tuesday, November 12, 2013
Room: Plaza ABC

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>