Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Belgium sneezes, the world catches a cold

25.11.2010
As the eurozone continues to wobble, new analysis of countries' economic interconnectedness finds that some of the countries with the greatest potential to cause a global crash have surprisingly small gross domestic production.

Using data from Bureau Van Dijk - the company information and business intelligence provider - to assess the reach and size of different countries' economies, and applying the Susceptible-Infected-Recovered (SIR) model, physicists from universities in Greece, Switzerland and Israel have identified the twelve countries with greatest power to spread a crisis globally.

The research published today, Thursday 25 November 2010, in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society), groups Belgium and Luxembourg alongside more obviously impactful economies such as the USA in the top twelve.

Using a statistical physics approach, the researchers from the Universities of Thessaloniki, Lausanne and Bar-Ilan used two different databases to model the effect of hypothetical economic crashes in different countries. The use of two different databases aided the avoidance of bias but threw up very similar results.

The data used allowed the physicists to identify links between the different countries, by mapping the global economy to a complex network, and gauge the likelihood of one failed economy having an effect on another.

One network was created using data on the 4000 world corporations with highest turnover and a second using data on import and export relations between 82 countries.

The SIR model, successfully used previously to model the spreading of disease epidemics, is applied to these two networks taking into consideration the strength of links between countries, the size of the crash, and the economic strength of the country in potential danger.

When put to the test with the corporate data, the USA, the UK, France, Germany, Netherlands, Japan, Sweden, Italy, Switzerland, Spain, Belgium and Luxembourg were part of an inner core of countries that would individually cause the most economic damage globally if their economies were to fail.

Using the import/export data, China, Russia, Japan, Spain, UK, Netherlands, Italy, Germany, Belgium, Luxembourg, USA, and France formed the inner core, with the researchers explaining that the difference – particularly the addition of China to this second list – is due to a large fraction of Chinese trade volume coming from subsidiaries of western corporations based in China.

The researchers write, "Surprisingly, not all 12 countries have the largest total weights or the largest GDP. Nevertheless, our results suggest that they do play an important role in the global economic network. This is explained by the fact that these smaller countries do not support only their local economy, but they are a haven for foreign investments."

The researchers' paper can be downloaded for free from Thursday 25 November 2010 here: http://iopscience.iop.org/1367-2630/12/11/113043/fulltext

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>