Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Beautiful Death: the Halos of Planetary Nebulae Revealed

11.09.2008
Stars without enough mass to turn into exploding supernovae end their lives blowing away most of their mass in a non-explosive, but intense stellar wind.

Only a hot stellar core remains in the form of a white dwarf; the rest of the star is dispersed into the interstellar medium, enriching it with chemically processed elements, such as carbon, that is found in all living organisms on Earth.

These elements were cooked in the stellar furnace during a stellar life span covering billions of years. The high-energy radiation from the hot white dwarf makes the blown gas to shine for a short period of time, and the result is one of the most colourful and beautiful astronomical objects: a planetary nebula.

The complex history of mass loss

The events which lead to the formation of a planetary nebula develop in two phases that finally induce a structure composed of a denser, inner region –the planetary nebula itself– and an external fainter halo, that consists of the ionized stellar wind. All together, the blowing of this material is performed in a relatively short time, in astronomical terms, and the planetary nebula is visible only during a few thousand years. For this reason there are not many of these objects available for study.

External halos of planetary nebulae are faint and difficult to study, but they can provide a wealth of information on the physical properties of the final mass loss stage of the dying star. Although there is progress in understanding both stellar evolution and mass loss theoretically, observational details of, in particular, the last phase of the mass loss process have remained obscure. Classical astronomical spectrographs and other instruments are able to study only a few points of such faint and extended objects, making the analysis of these halos an extremely cumbersome, or even impossible task.

Integral field spectroscopy to the rescue

Through the new technique of integral field spectroscopy it is possible to obtain hundreds of spectra across a relatively large area of the sky, and this opens new prospects for the analysis of extended objects, such as planetary nebulae. Calar Alto Observatory has one of the world's best integral field spectrographs, PMAS (Potsdam Multi-Aperture Spectrophotometer), attached to its 3.5 m telescope.

In a research article, that was just published in the journal Astronomy and Astrophysics, a research team from the Astrophysical Institute in Potsdam, lead by C. Sandin, has used PMAS to study the two-dimensional structure of a selected set of five planetary nebulae in our Galaxy: the Blue Snowball Nebula (NGC 7662), M2-2, IC 3568, the Blinking Planetary Nebula (NGC 6826) and the Owl Nebula (NGC 3587).

The halos of planetary nebulae revealed

For four of these objects the research team derived a temperature structure, which extended all the way from the central star and out into the halo, and found, in three cases, that the temperature increases steeply in the inner halo. According to Sandin, "The appearance of such hot halos can be readily explained as a transient phenomenon which occurs when the halo is being ionized." Another remarkable result of this study is that it has been possible, for the first time, to measure the mass loss history of the final evolution of the stars which produced the planetary nebulae.

Sandin says that "In comparison to other methods which measure mass loss rates, our estimates are made directly on the gas component of the stellar wind." The results allow important insights on how mass is lost in time, and the researchers found that "the mass loss rate increases by a factor of about 4-7 during the final, say, 10 000 years of mass loss."

The research team plans to continue with this study of the final evolutionary phases of low mass stars, and have observed planetary nebulae in the Magellanic Clouds. As the authors argue "on the theoretical side the results of our studies should provide a challenging basis for further improvement of models of stellar winds."

David Galadi-Enriquez | alfa
Further information:
http://www.caha.es
http://www.caha.es/the-beautiful-death_en.html

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>