Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New beam source for Brookhaven accelerators

18.10.2010
Modern, compact ion injector will feed new kinds of particles to RHIC and NSRL

A new source of ions will soon be the starting point for the beams entering two major research facilities at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory - the Relativistic Heavy Ion Collider (RHIC), where physicists are recreating conditions of the early universe to learn more about the forces that hold matter together, and the NASA Space Radiation Laboratory (NSRL), where scientists study the effects of space radiation to help find ways to protect astronauts.

The new facility, the Electron Beam Ion Source (EBIS), will produce and accelerate beams with greater versatility than the current system, allowing studies with new kinds of ions previously unavailable to the researchers. EBIS recently received formal approval to start operations from DOE.

"This new system uses EBIS and two small accelerators as a replacement for the Tandem Van de Graaff accelerators, which have been running successfully for 40 years, but with certain limitations when it comes to producing ion beams for RHIC and NSRL," said Jim Alessi, leader of the group that designs and operates "pre-injector" accelerator systems at Brookhaven.

For example, because the Tandems must start with negatively charged ions - atoms with one extra electron - they can only produce beams from about half the elements in the periodic table. EBIS can start with positive ions or even neutral atoms, allowing the creation of ion beams from almost any element.

For the RHIC program, physicists are most interested in creating and colliding beams of uranium ions because of their football shape and large number of protons and neutrons. Head-on collisions of two tiny uranium ions positioned like colliding spiraling footballs would produce a speck of matter with even greater energy density than the spherical gold ion collisions currently creating a hot soup of quarks and gluons at RHIC (see: http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=1074). This higher energy density will allow scientists to study the evolution of this early-universe substance over a wider range of conditions than has been previously accessible at RHIC.

Head-on collisions with the uranium ions oriented vertically, like footballs prepared for a kick-off, are also of great interest: They will permit scientists at RHIC to separate the effects of extremely hot matter formed when two spherical gold ions overlap only partially on impact (forming a similar football-shaped interaction region) from effects of the ultra-strong magnetic fields produced in such non-head-on collisions.

At NSRL, scientists are interested in testing the effects of ions of noble gases like helium, neon, and argon, because these are common components of galactic cosmic rays and could pose a significant risk to astronauts on long-term space missions.

Another major advantage is that EBIS can feed beams of different ions to each facility at practically the same time. Said Alessi, "We can provide one type of beam to RHIC and, one second later, we can provide a different type of beam to the NASA program. We can switch back and forth between different types of beams quickly, so the two programs can schedule their experiments and run simultaneously, independently of one another, rather than having to use the same kind of ions at the same time or plan their runs sequentially."

EBIS works by trapping atoms or ions in an electrically charged chamber inside a 1.5-meter-long cylindrical superconducting magnet. The voltage holds the charged ions in the chamber while an electron beam generated at one end passes through, systematically stripping electrons off the trapped atoms. For helium gas, there are only two electrons to be stripped off to create a beam of helium ions, where each has a 2+ charge. For gold - the heaviest ion collided at RHIC to date - the ions start off with one electron already stripped off, but they are held in the trap until 32 electrons have been removed, resulting in a beam where each ion has a net charge of 32+. "The longer you hold the beam in the trap, the more electrons you can strip off," Alessi said.

When the desired number of electrons is removed (that is, when the desired charge state has been reached), the voltage is turned off and the beam is released from the trap. The ion beams then move from EBIS through two small linear accelerators that bring the beam up to the energy needed for injection into the next accelerator - the Booster and then NSRL or the Alternating Gradient Synchrotron and then RHIC.

The high charge achieved in EBIS greatly simplifies the entire acceleration process. "If you have more charge on the ion, then it gets higher energy for the same voltage in the accelerator. So by producing an ion with a charge of 32+ in the case of gold, the energy it gets across a fixed voltage is larger than it would be with a lower charge. Since you need lower voltage to accelerate the ions, then you can do this over a much shorter distance - 10 feet vs. about 80 feet in the Tandems - resulting in a more compact accelerator."

That compactness along with the modern accelerator technologies used in EBIS and the two linear accelerators will make the new pre-injector system easier to operate and maintain, leading to more cost-effective operations. "Once we finish commissioning and debugging the system, EBIS will be extremely reliable," Alessi said.

EBIS will begin providing helium ions to researchers at NSRL this fall. The first uranium collisions at RHIC may take place as early as late winter or spring 2011. Meanwhile, and even after EBIS starts operating, the Tandems will continue to run to provide beams for a community of outside scientists who use that facility for dedicated research on electronic components for industrial and space applications.

The EBIS pre-injector system was jointly funded by NASA and the DOE Office of Science.

SIDEBAR: Colliding Uranium

As with the gold ion collisions at RHIC, which have used less gold than is found in a single wedding ring over RHIC's ten years of operations, the amount of uranium used will be extremely small and not pose any radiation risk to either Brookhaven Lab staff or the public. "A handful of soil typically has more naturally occurring uranium than we'll be using in a year at RHIC," Alessi said. Also, EBIS will use the dominant naturally occurring form of uranium, U238, which cannot "split" and sustain a nuclear chain reaction like U235.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/rhic
http://www.bnl.gov/medical/NASA/NSRL_description.asp

Further reports about: EBIS NASA NSRL RHIC Science TV cosmic ray ion beam linear accelerator magnetic field specimen processing

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>