Bats' echolocation recorded for human exploit

A team of British researchers has worked with six adult Egyptian fruit bats from Tropical World in Leeds to record and recreate their calls. These calls are pairs of 'clicks' from the bats' tongues that they use to fill their surroundings with acoustic energy; the echoes that return allow the bats to form an image of their environment.

New research published today, Tuesday 11 May, in IOP Publishing's Bioinspiration & Biomimetics, describes how engineers and biologists from the Universities of Strathclyde and Leeds worked with the bats to record their double-click echolocation call, and its returning echoes, using a miniature wireless microphone sensor mounted on the bat whilst in flight.

During echolocation, some bats are known to use a natural acoustic gain control. This allows them to emit high-intensity calls without deafening themselves, and then to hear the weak echoes returning from surrounding objects. The researchers replicated this system in electronics to allow the sensor to record both the emitted and reflected echolocation signals, providing an insight into the full echolocation process.

The six bats performed up to sixteen flights each along a flight corridor. Each flight was short – lasting only about three seconds – but, with the bats' clicks only lasting a quarter of a millisecond, a large number of calls were recorded for the scientists to analyse.

Once back into the laboratory, the researchers were able to accurately recreate the echolocation calls using a custom-built ultrasonic loudspeaker. This technique will allow the signals and processes bats use to be applied to human engineering systems such as sonar. Specifically, the researchers are looking to apply these techniques in the positioning of robotic vehicles, used in structural testing applications.

Lead author Simon Whiteley from the Centre for Ultrasonic Engineering at the University of Strathclyde, said, “We aim to understand the echolocation process that bats have evolved over millennia, and employ similar signals and techniques in engineering systems. We are currently looking to apply these methods to positioning of robotic vehicles, which are used for structural testing. This will provide enhanced information on the robots' locations, and hence the location of any structural flaws they may detect.”

The article will be available to read from Tuesday 11 May at http://iopscience.iop.org/1748-3190/5/2/026001

Media Contact

Joe Winters EurekAlert!

More Information:

http://www.iop.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors