Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BaBar Experiment Confirms Time Asymmetry

19.11.2012
Time's quantum arrow has a preferred direction, new analysis shows

Time marches relentlessly forward for you and me; watch a movie in reverse, and you’ll quickly see something is amiss. But from the point of view of a single, isolated particle, the passage of time looks the same in either direction. For instance, a movie of two particles scattering off of each other would look just as sensible in reverse – a concept known as time reversal symmetry.

Now the BaBar experiment at the Department of Energy's (DOE) SLAC National Accelerator Laboratory has made the first direct observation of a long-theorized exception to this rule.

Digging through nearly 10 years of data from billions of particle collisions, researchers found that certain particle types change into one another much more often in one way than they do in the other, a violation of time reversal symmetry and confirmation that some subatomic processes have a preferred direction of time.

Reported this week in the journal Physical Review Letters, the results are impressively robust, with a 1 in 10 tredecillion (1043) or 14-sigma level of certainty – far more than needed to declare a discovery.

“It was exciting to design an experimental analysis that enabled us to observe, directly and unambiguously, the asymmetrical nature of time,” said BaBar collaborator Fernando Martínez-Vidal, associate professor at the University of Valencia and member of the Instituto de Fisica Corpuscular (IFIC), who led the investigation. “This is a sophisticated analysis, the kind of experimental work that can only be done when an experiment is mature.”

BaBar, which collected data at SLAC from 1999 to 2008, was designed to tease out subtle differences in the behavior of matter and antimatter that might help account for the preponderance of matter in the universe. It produced almost 500 million pairs of particles called B mesons and their antimatter counterparts B-bar mesons for study. BaBar scientists found that B mesons and B-bar mesons do, indeed, behave differently in ways that violate so-called CP symmetry, which incorporates the symmetries of charge (positive versus negative) and parity (which can be thought of as left-handedness versus right-handedness). This discovery of CP violation contributed to the 2008 Nobel Prize in Physics.

CP symmetry is linked with time reversal symmetry through the CPT (charge-parity-time) Theorem, which states that the three symmetries must remain in balance for any given particle system. If one of the symmetries is out of whack, at least one of the others must be, too.

So the BaBar data, with its evidence of CP symmetry violation already in hand, was a good place to look for violation of time reversal symmetry that would serve to balance CPT as a whole.

BaBar's new time violation analysis was based on a concept proposed in 1999. Researchers examined a chain of particle transformations in which B mesons flipped between two different states called B-zero and B-even. Taking advantage of the quantum entanglement of the B mesons, which enables information about the first decaying particle to be used to determine the state of its partner at the time of the decay, they were able to find that these transformations happened six times more often in one direction than the other.

“This is a fresh way to understand data we had already used to measure CP violation,” said BaBar physics coordinator Abner Soffer, associate professor at Tel Aviv University. “By looking at it slightly differently we were able to undeniably see time violation as well. What’s nice is that the effect was there the whole time, but nobody had thought about it the right way before.”

Time violation had previously been seen in particles called neutral kaons by the CPLEAR experiment at CERN, but that measurement was not direct because of the inability to distinguish T violation from CP violation, and the interpretation of those results drew some criticism. It’s hard to set up laboratory conditions that can see time reversal violation, Martínez-Vidal explained. But BaBar provided just the right conditions for a clear, direct measurement.

“In the past, a true test of time reversal symmetry with unstable particles was considered to be impossible,” said BaBar associate José Bernabéu, a professor at the University of Valencia and IFIC, and one of the originators of the analysis concept. “It's spectacular that the solution came from the same entanglement phenomenon used for quantum communication and computing.”

Michael Roney, BaBar spokesperson and professor at the University of Victoria in Canada, said "BaBar's data has been extremely fruitful and continues to produce important results, such as this unique and unambiguous test of quantum field theory. As we continue to work on almost 100 measurements from BaBar that investigate the fundamental nature of time and matter, we're gratified to have further validated this underlying theory."

This work is supported by the DOE Office of Science and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Bronwyn Barnett | EurekAlert!
Further information:
http://www.slac.stanford.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>