Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atoms dressed with light show new interactions, could reveal way to observe enigmatic particle

09.12.2011
Physicists at the National Institute of Standards and Technology (NIST) have found a way to manipulate atoms' internal states with lasers that dramatically influences their interactions in specific ways.

Such light-tweaked atoms can be used as proxies to study important phenomena that would be difficult or impossible to study in other contexts. Their most recent work, appearing in Science,* demonstrates a new class of interactions thought to be important to the physics of superconductors that could be used for quantum computation.

Particle interactions are fundamental to physics, determining, for example, how magnetic materials and high temperature superconductors work. Learning more about these interactions or creating new "effective" interactions will help scientists design materials with specific magnetic or superconducting properties.

Because most materials are complicated systems, it is difficult to study or engineer the interactions between the constituent electrons. Researchers at NIST build physically analogous systems using supercooled atoms to learn more about how materials with these properties work.

"Basically, we're able to simulate these complicated systems and observe how they work in slow motion," says Ian Spielman, a physicist at NIST and fellow of the Joint Quantum Institute (JQI), a collaborative enterprise of NIST and the University of Maryland.

According to Ross Williams, a postdoctoral researcher at NIST, cold atom experiments are good for studying many body systems because they offer a high degree of control over position and behavior of the atoms.

"First, we trap rubidium-87 atoms using magnetic fields and cool them down to 100 nanokelvins," says Williams. "At these temperatures, they become what's known as a Bose-Einstein condensate. Cooling the atoms this much makes them really sluggish, and once we see that they are moving slowly enough, we use lasers to 'dress' the atoms, or mix together different energy states within them. Once we have dressed the atoms, we split the condensate, collide the two parts, and then see how they interact."

According to Williams, without being laser-dressed, simple, low-energy interactions dominate how the atoms scatter as they come together. While in this state, the atoms bang into each other and scatter to form a uniform sphere that looks the same from every direction, which doesn't reveal much about how the atoms interacted.

When dressed, however, the atoms tended to scatter in certain directions and form interesting shapes indicative of the influence of new, more complicated interactions, which aren't normally seen in ultracold atom systems. The ability to induce them allows researchers to explore a whole new range of exciting quantum phenomena in these systems.

While the researchers used rubidium atoms, which are bosons, for this experiment, they are modifying the scheme to study ultracold fermions, a different species of particle. The group hopes to find evidence of the Majorana fermion, an enigmatic, still theoretical kind of particle that is involved in superconducting systems important to quantum computation.

"A lot of people are looking for the Majorana fermion," says Williams. "It would be great if our approach helped us to be the first."

For more details, see the JQI news announcement, "The Impact of Quantum Matter" at http://jqi.umd.edu/news/291-the-impact-of-quantum-matter.html.

View an animation of the atom interactions on the NIST YouTube channel at http://www.youtube.com/watch?v=cRiLCTnFRdM

* R.A. Williams, L.J. LeBlanc, K. Jiménez-García, M.C. Beeler, A.R. Perry, W.D. Phillips, I.B. Spielman. Synthetic Partial Waves in Ultracold Atomic Collisions . Science Express, 8 December 2011

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>