Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU Mars camera yields best Red Planet map ever

26.07.2010
The best Mars map ever made is now available online for planetary scientists and armchair astronauts alike. And citizen scientists are invited to help make it even better.

Websites developed recently at Arizona State University's Mars Space Flight Facility, in collaboration with NASA, the Jet Propulsion Laboratory, and Microsoft, make it easy for anyone to trek the craters, volcanoes, and dusty plains of Earth's small red neighbor world.

"We've assembled the best global map of Mars to date," says Philip Christensen, Regents' Professor of geological sciences in the School of Earth and Space Exploration, part of the College of Liberal Arts and Sciences. "And we made it available via the Internet so everyone can help make it better."

The map is accessible as an interactive zoomable global map, which is the easiest for most viewers to use. (Advanced users with large bandwidth, powerful computers, and sophisticated software capable of handling gigabyte images, can download the map in sections at full resolution.)

The maps show Mars as if sliced from a globe, unwrapped, and flattened out on a table. Nearly 21,000 individual images have been smoothed, blended, fitted together, and cartographically controlled to make a giant mosaic that Web viewers can zoom into and scroll around. The few missing pieces show where clouds and poor lighting have thus far prevented map-quality imaging; these places are high on mission planners' must-image target list.

"Portions of Mars have been mapped at higher resolution," says Christensen, "but this is the most detailed map so far that covers the planet."

All the map images come from the Thermal Emission Imaging System (THEMIS), a multi-band infrared and visual camera on NASA's Mars Odyssey orbiter. The smallest surface details visible when you zoom all the way in are 100 meters, or 330 feet, wide.

The 100-meter map has been in the making since THEMIS observations began eight years ago. "We tied the images to the cartographic control grid provided by the U.S. Geological Survey, which also modeled the THEMIS camera's optics," says Christensen, who is the principal investigator for THEMIS. "This let us remove instrument distortion, so features on the ground are correctly located to within a few pixels."

The new map lays the framework for global studies of properties such as the mineral composition and physical nature of the surface materials. In addition, it is helping NASA mission planners choose targets for aiming instruments on the Mars Reconnaissance Orbiter. And the map also plays a role in evaluating potential landing sites for NASA's next Mars rover, the Mars Science Laboratory, due for launch in late 2011.

Making the good even better

But every map, however good, can still be improved and this is no exception. "Computer-made maps have gone about as far as they can," says Christensen. "Now it's the turn for citizen scientists."

He adds, “With the help of people from around the world, we can increase the accuracy of the global Mars map for Red Planet explorers everywhere."

NASA's "Be A Martian" website, developed in cooperation with Microsoft, offers an easy and engaging way for would-be Mars mappers to do exactly this. ASU is regularly contributing newly taken THEMIS images to the Be A Martian "Map Room," where the public can help by hand-aligning new images, placing them within a pixel’s accuracy.

Mars mission album

The origins of the new global map lie in the work of previous Mars missions, which began imaging the Red Planet decades ago. Two new websites developed at ASU provide a wide window into the gigantic collection of images taken by earlier Mars missions.

Christensen explains: "These websites present all the images taken by cameras aboard Mars-orbiting space probes, starting with Viking in 1976. The image collection, regularly updated, also includes those from current missions, such as Europe's Mars Express, and NASA's Mars Odyssey and Mars Reconnaissance Orbiter."

The new Mars Image Explorer, he says, lets viewers find images in either of two ways. Viewers can click on a map of Mars — or they can specifying various key properties such as latitude and longitude, spacecraft orbit number, date, or viewing conditions. Viewers can check out the Explorer by selecting key properties or by clicking on a mission-specific Mars map.

The broad purpose underlying all these sites is making Mars exploration easy and engaging for everyone, explains Christensen.

"We're trying to create a user-friendly interface between the public and NASA's Planetary Data System, which does a terrific job of collecting, validating, and archiving data. Our focus lies in providing easy access to Mars images for the general public and scientists alike."

Robert Burnham, robert.burnham@asu.edu
480-458-8207
School of Earth and Space Exploration

Robert Burnham | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: ASU Earth's magnetic field Galaxy Evolution Explorer Mars NASA Planet Red Planet THEMIS

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>