Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicist Helps Map the Milky Way’s Four Spiral Arms

06.01.2009
Iowa State University’s Martin Pohl is part of a research team that has developed the first complete map of the Milky Way galaxy’s spiral arms.

The map shows the inner part of the Milky Way has two prominent, symmetric spiral arms, which extend into the outer galaxy where they branch into four spiral arms.

“For the first time these arms are mapped over the entire Milky Way,” said Pohl, an Iowa State associate professor of physics and astronomy. “The branching of two of the arms may explain why previous studies – using mainly the inner or mainly the outer galaxy – have found conflicting numbers of spiral arms.”

The new map was developed by Pohl, Peter Englmaier of the University of Zurich in Switzerland and Nicolai Bissantz of Ruhr-University in Bochum, Germany.

As the sun and other stars revolve around the center of the Milky Way, researchers cannot see the spiral arms directly, but have to rely on indirect evidence to find them. In the visible light, the Milky Way appears as an irregular, densely populated strip of stars. Dark clouds of dust obscure the galaxy’s central region so it cannot be observed in visible light.

The National Aeronautics and Space Administration’s Cosmic Background Explorer satellite was able to map the Milky Way in infrared light using an instrument called the Diffuse IR Background Experiment. The infrared light makes the dust clouds almost fully transparent.

Englmaier and Bissantz used the infrared data from the satellite to develop a kinematic model of gas flow in the inner galaxy. Pohl used the model to reconstruct the distribution of molecular gas in the galaxy. And that led to the researchers’ map of the galaxy’s spiral arms.

The Milky Way is the best studied galaxy in the universe because other galaxies are too far away for detailed observations. And so studies of the galaxy are an important reference point for the interpretation of other galaxies.

Astrophysicists know that the stars in the Milky Way are distributed as a disk with a central bulge dominated by a long bar-shaped arrangement of stars. Outside this central area, stars are located along spiral arms.

In addition to the two main spiral arms in the inner galaxy, two weaker arms exist. These arms end about 10,000 light-years from the galaxy’s center. (The sun is located about 25,000 light-years from the galactic center.) One of these arms has been known for a long time, but has always been a mystery because of its large deviation from circular motion. The new model explains the deviation as a result of alternations to its orbit caused by the bar’s gravitational pull. The other, symmetric arm on the far side of the galaxy was recently found in gas data.

The discovery of this second arm was a great relief for Englmaier: “Finally it is clear that our model assumption of symmetry was correct and the inner galaxy is indeed quite symmetric in structure.”

Other scientific groups are already interested in using the new map for their research. A group from France, for example, hopes to use it in their search for dark matter.

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>