Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers see right into heart of exploding star

08.10.2014

An international team of astronomers has been able to see into the heart of an exploding star, by combining data from telescopes that are hundreds or even thousands of kilometres apart. Their results are published at 18:00 hours on Oct 8 2014 in the journal Nature.

Highly-detailed images produced using radio telescopes from across Europe and America have pinpointed the locations where a stellar explosion (called a nova), emitted gamma rays (extremely high energy radiation). The discovery revealed how the gamma-ray emissions are produced, something which mystified astronomers when they were first observed in 2012.


Artist's impressions of the gas ejected in the nova explosion with the binary star system at the center.

Credit: Bill Saxton, NRAO/AUI/NSF

"We not only found where the gamma rays came from, but also got a look at a previously-unseen scenario that may be common in other nova explosions," said Laura Chomiuk, of Michigan State University.

Tim O'Brien of The University of Manchester's Jodrell Bank Observatory, one of the international team of astronomers who worked on the study, explains, "A nova occurs when gas from a companion star falls onto the surface of a white dwarf star in a binary system. This triggers a thermonuclear explosion on the surface of the star which blasts the gas into space at speeds of millions of miles per hour".

"When it explodes it brightens hugely, leading in some cases to the appearance of a new star in the sky, hence the term nova. These explosions are unpredictable, so when one goes off, the pressure is on for us to try and get as many of the world's telescopes as possible to take a look before it fades away. For this nova, our international team was primed and ready to go and we really came up trumps."

Astronomers did not expect this nova scenario to produce high-energy gamma rays. However, in June of 2012, NASA's Fermi spacecraft detected gamma rays coming from a nova called V959 Mon, some 6500 light-years from Earth.

At the same time, observations with the Karl G. Jansky Very Large Array (VLA) of telescopes in the USA indicated that radio waves coming from the nova were probably the result of subatomic particles moving at nearly the speed of light interacting with magnetic fields. The high-energy gamma-ray emission, the astronomers noted, also required such fast-moving particles.

Later observations from the telescopes of the European VLBI network (EVN) and the Very Long Baseline Array (VLBA) in the USA revealed two distinct knots of radio emission. These knots then were seen to move away from each other.

This observation, along with studies made with the e-MERLIN telescope array in the UK, and further VLA observations in 2014, provided the scientists with information that allowed them to put together a picture of how the radio knots, and the gamma rays, were produced.

In the first stage of this scenario, the white dwarf and its companion give up some of their orbital energy to boost some of the explosion material, making the ejected material move outward faster in the plane of their orbit. Later, the white dwarf blows off a faster wind of particles moving mostly outward along the poles of the orbital plane. When the faster-moving polar flow hits the slower-moving material, the shock accelerates particles to the speeds needed to produce the gamma rays, and the knots of radio emission.

"By watching this system over time and seeing how the pattern of radio emission changed, then tracing the movements of the knots, we saw the exact behaviour expected from this scenario," Chomiuk said.

A technique called radio interferometry, in which data from various radio telescopes are combined to obtain a sharper image, played a fundamental role in this result. By connecting together radio telescopes across tens, hundreds and even thousands of kilometres, the scientists were able to zoom in to get a much sharper view of the heart of this exploding star.

Gamma rays from several nova explosions have now been detected so it may be that the phenomenon is relatively common, but perhaps seen only when the nova is sufficiently close to Earth.

Because this type of ejection is also seen in other binary-star (two stars orbiting each other) systems, the new insights may help astronomers understand how those systems develop. The phase in which matter ejected from one star engulfs its companion occurs in all close binary stars, and is poorly understood.

"We may be able to use novae as a 'testbed' for improving our understanding of this critical stage of binary evolution," Chomiuk said.

###

Media enquiries to:

Katie Brewin
Media Relations Officer
The University of Manchester
Tel: 0161 275 8387
Email: atie.brewin@manchester.ac.uk

Notes to editors:

The paper: Binary orbits as the driver of gamma-ray emission and mass ejection in classical novae is by L. Chomiuk, J. D. Linford, J. Yang, T. J. O'Brien, Z. Paragi, A. J. Mioduszewski, R. J. Beswick, C. C. Cheung, K. Mukai, T. Nelson, V. A. R. M. Ribeiro, M. P. Rupen, J. L. Sokoloski, J. Weston, Y. Zheng, M. F. Bode, S. Eyres, N. Roy, G. B. Taylor, published in Nature and available online 18:00 hrs (London time) October 08 2014

Images: Artist's impressions of the gas ejected in the nova explosion with the binary star system at the centre are available on request. Picture:Credit: Bill Saxton, NRAO/AUI/NSF

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

e-MERLIN is operated by The University of Manchester for the UK's Science and Technology Facilities Council (STFC).

The European VLBI Network is a collaboration of the major radio astronomical institutes in Europe, Asia and South Africa and performs high angular resolution observations of cosmic radio sources.

The Joint Institute for VLBI in Europe (JIVE) is a scientific foundation based in the Netherlands with a mandate to support the operations of the European VLBI Network.

Katie Brewin | Eurek Alert!
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>