Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find extreme weather on an alien world

13.09.2011
Cosmic oddball may harbor a gigantic storm

A University of Toronto-led team of astronomers has observed extreme brightness changes on a nearby brown dwarf that may indicate a storm grander than any seen yet on a planet. Because old brown dwarfs and giant planets have similar atmospheres, this finding could shed new light on weather phenomena of extra-solar planets.


Astronomers have observed extreme brightness changes on a nearby brown dwarf that may indicate a storm grander than any seen yet on a planet. This finding could new shed light on the atmospheres and weather on extra-solar planets. Credit: Art by Jon Lomberg

As part of a large survey of nearby brown dwarfs – objects that occupy the mass gap between dwarf stars and giant planets – the scientists used an infrared camera on the 2.5m telescope at Las Campanas Observatory in Chile to capture repeated images of a brown dwarf dubbed 2MASS J21392676+0220226, or 2MASS 2139 for short, over several hours. In that short time span, they recorded the largest variations in brightness ever seen on a cool brown dwarf.

"We found that our target's brightness changed by a whopping 30 per cent in just under eight hours," said PhD candidate Jacqueline Radigan, lead author of a paper to be presented this week at the Extreme Solar Systems II conference in Jackson Hole, Wyoming and submitted to the Astrophysical Journal. "The best explanation is that brighter and darker patches of its atmosphere are coming into our view as the brown dwarf spins on its axis," said Radigan.

"We might be looking at a gigantic storm raging on this brown dwarf, perhaps a grander version of the Great Red Spot on Jupiter in our own solar system, or we may be seeing the hotter, deeper layers of its atmosphere through big holes in the cloud deck," said co-author Professor Ray Jayawardhana, Canada Research Chair in Observational Astrophysics at the University of Toronto and author of the recent book Strange New Worlds: The Search for Alien Planets and Life beyond Our Solar System.

According to theoretical models, clouds form in brown dwarf and giant planet atmospheres when tiny dust grains made of silicates and metals condense. The depth and profile of 2MASS 2139's brightness variations changed over weeks and months, suggesting that cloud patterns in its atmosphere are evolving with time.

"Measuring how quickly cloud features change in brown dwarf atmospheres may allow us to infer atmospheric wind speeds eventually and teach us about how winds are generated in brown dwarf and planetary atmospheres," Radigan added.

The paper describing the findings, titled "High Amplitude, Periodic Variability of a Cool Brown Dwarf: Evidence for Patchy, High-Contrast Cloud Features", is available online now at http://www.astro.utoronto.ca/~radigan/weather/bdweather.pdf.

Other co-authors of this work are David Lafrenière and Étienne Artigau at the Université de Montreal, Didier Saumon at Los Alamos National Laboratory, and Mark Marely at NASA Ames Research Center.

The research was supported by a Vanier Canada Graduate Scholarship awarded to Radigan, and a Research Tools and Instrumentation grant, a Discovery grant, a Steacie Fellowship and the Canada Research Chairs program, all awarded to Jayawardhana from the Natural Sciences and Engineering Research Council of Canada.

Note to media: To see an artist's impression associated with this release, please visit http://www.artsci.utoronto.ca/main/media-releases/storm-on-a-nearby-brown-dwarf

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>