Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find extreme weather on an alien world

13.09.2011
Cosmic oddball may harbor a gigantic storm

A University of Toronto-led team of astronomers has observed extreme brightness changes on a nearby brown dwarf that may indicate a storm grander than any seen yet on a planet. Because old brown dwarfs and giant planets have similar atmospheres, this finding could shed new light on weather phenomena of extra-solar planets.


Astronomers have observed extreme brightness changes on a nearby brown dwarf that may indicate a storm grander than any seen yet on a planet. This finding could new shed light on the atmospheres and weather on extra-solar planets. Credit: Art by Jon Lomberg

As part of a large survey of nearby brown dwarfs – objects that occupy the mass gap between dwarf stars and giant planets – the scientists used an infrared camera on the 2.5m telescope at Las Campanas Observatory in Chile to capture repeated images of a brown dwarf dubbed 2MASS J21392676+0220226, or 2MASS 2139 for short, over several hours. In that short time span, they recorded the largest variations in brightness ever seen on a cool brown dwarf.

"We found that our target's brightness changed by a whopping 30 per cent in just under eight hours," said PhD candidate Jacqueline Radigan, lead author of a paper to be presented this week at the Extreme Solar Systems II conference in Jackson Hole, Wyoming and submitted to the Astrophysical Journal. "The best explanation is that brighter and darker patches of its atmosphere are coming into our view as the brown dwarf spins on its axis," said Radigan.

"We might be looking at a gigantic storm raging on this brown dwarf, perhaps a grander version of the Great Red Spot on Jupiter in our own solar system, or we may be seeing the hotter, deeper layers of its atmosphere through big holes in the cloud deck," said co-author Professor Ray Jayawardhana, Canada Research Chair in Observational Astrophysics at the University of Toronto and author of the recent book Strange New Worlds: The Search for Alien Planets and Life beyond Our Solar System.

According to theoretical models, clouds form in brown dwarf and giant planet atmospheres when tiny dust grains made of silicates and metals condense. The depth and profile of 2MASS 2139's brightness variations changed over weeks and months, suggesting that cloud patterns in its atmosphere are evolving with time.

"Measuring how quickly cloud features change in brown dwarf atmospheres may allow us to infer atmospheric wind speeds eventually and teach us about how winds are generated in brown dwarf and planetary atmospheres," Radigan added.

The paper describing the findings, titled "High Amplitude, Periodic Variability of a Cool Brown Dwarf: Evidence for Patchy, High-Contrast Cloud Features", is available online now at http://www.astro.utoronto.ca/~radigan/weather/bdweather.pdf.

Other co-authors of this work are David Lafrenière and Étienne Artigau at the Université de Montreal, Didier Saumon at Los Alamos National Laboratory, and Mark Marely at NASA Ames Research Center.

The research was supported by a Vanier Canada Graduate Scholarship awarded to Radigan, and a Research Tools and Instrumentation grant, a Discovery grant, a Steacie Fellowship and the Canada Research Chairs program, all awarded to Jayawardhana from the Natural Sciences and Engineering Research Council of Canada.

Note to media: To see an artist's impression associated with this release, please visit http://www.artsci.utoronto.ca/main/media-releases/storm-on-a-nearby-brown-dwarf

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>