Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Dissect a Supermassive Black Hole with Natural Magnifying Glasses

15.12.2008
The team of astronomers from Europe and the US studied the "Einstein Cross", a famous cosmic mirage. This cross-shaped configuration consists of four images of a single very distant source.

The multiple images are a result of gravitational lensing by a foreground galaxy, an effect that was predicted by Albert Einstein as a consequence of his theory of general relativity.

The light source in the Einstein Cross is a quasar approximately ten billion light-years away, whereas the foreground lensing galaxy is ten times closer. The light from the quasar is bent in its path and magnified by the gravitational field of the lensing galaxy.

This magnification effect, known as "macrolensing", in which a galaxy plays the role of a cosmic magnifying glass or a natural telescope, proves very useful in astronomy as it allows us to observe distant objects that would otherwise be too faint to explore using currently available telescopes. "The combination of this natural magnification with the use of a big telescope provides us with the sharpest details ever obtained," explains Frédéric Courbin, leader of the programme studying the Einstein Cross with ESO's Very Large Telescope.

In addition to macrolensing by the galaxy, stars in the lensing galaxy act as secondary lenses to produce an additional magnification. This secondary magnification is based on the same principle as macrolensing, but on a smaller scale, and since stars are much smaller than galaxies, is known as "microlensing". As the stars are moving in the lensing galaxy, the microlensing magnification also changes with time. From Earth, the brightness of the quasar images (four in the case of the Einstein Cross) flickers around a mean value, due to microlensing. The size of the area magnified by the moving stars is a few light-days, i.e., comparable in size to the quasar accretion disc.

The microlensing affects various emission regions of the disc in different ways, with smaller regions being more magnified. Because differently sized regions have different colours (or temperatures), the net effect of the microlensing is to produce colour variations in the quasar images, in addition to the brightness variations. By observing these variations in detail for several years, astronomers can measure how matter and energy are distributed about the supermassive black hole that lurks inside the quasar. Astronomers observed the Einstein Cross three times a month over a period of three years using ESO's Very Large Telescope (VLT), monitoring all the brightness and colour changes of the four images.

"Thanks to this unique dataset, we could show that the most energetic radiation is emitted in the central light-day away from the supermassive black hole and, more importantly, that the energy decreases with distance to the black hole almost exactly in the way predicted by theory," says Alexander Eigenbrod, who completed the analysis of the data.

The use of the macro- and microlensing, coupled with the giant eye of the VLT, enabled astronomers to probe regions on scales as small as a millionth of an arcsecond. This corresponds to the size of a one euro coin seen at a distance of five million kilometres, i.e., about 13 times the distance to the Moon! "This is 1000 times better than can be achieved using normal techniques with any existing telescope," adds Courbin.

Measuring the way the temperature is distributed around the central black hole is a unique achievement. Various theories exist for the formation and fuelling of quasars, each of which predicts a different profile. So far, no direct and model-independent observation has allowed scientists to validate or invalidate any of these existing theories, particularly for the central regions of the quasar. "This is the first accurate and direct measurement of the size of a quasar accretion disc with wavelength (colour), independent of any model," concludes team member Georges Meylan.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2008/pr-47-08.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>