Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Armchair nanoribbons made into spintronic device

26.01.2011
Discovery by Iranian physicists promises cheaper electronics down the road

In a development that may revolutionize handheld electronics, flat-panel displays, touch panels, electronic ink, and solar cells, as well as drastically reduce their manufacturing costs, physicists in Iran have created a spintronic device based on "armchair" graphene nanoribbons.

Spintronic devices are being pursued by the semiconductor and electronics industries because they promise to be smaller, more versatile, and much faster than today's electronics.

As described in the American Institute of Physics journal Applied Physics Letters, nanoribbons such as these could one day replace indium tin oxide -- an expensive material for which researchers have been searching for suitable substitutes.

Nanoribbons are carbon nanotubes that have been "unzipped" using a room-temperature chemical process to produce ultrathin, flat ribbons of straight-edged sheets of graphene. Finite, narrow strips of graphene are cut out from a two-dimensional sheet of graphene to create the nanoribbons. And depending on how the ribbon is cut out, it results in either an "armchair" or a zigzag edge. An armchair ribbon can be thought of as essentially an unrolled zigzag nanotube.

"We proposed an electronic spin-filter device using nonmagnetic materials. Our system, which is an all-carbon device, passes only one type of spin current," says Alireza Saffarzadeh, an associate professor in the Department of Physics at Payame Noor University. This property is due to the finite-size effect and geometry of the zigzag-edge graphene nanoribbons, Saffarzadeh explains.

"By applying a gate voltage, the type of spin current can be switched from spin-up to spin-down or vice versa," Saffarzadeh says. "For this reason, the system acts as a spin switch. And these properties are useful in spintronic applications, such as magnetic random access memory."

Saffarzadeh and colleague Roohala Farghadan, a Ph.D. student in Tarbiat Modares University's Department of Physics, found that graphene nanoribbons are good candidates for electronic and spintronic devices due to high carrier mobility, long spin-relaxation times and lengths, and spin-filtering abilities.

The article, "A spin-filter device based on armchair graphene nanoribbons," by A. Saffarazadeh and R. Farghadan appears in the journal Applied Physics Letters. See: http://link.aip.org/link/applab/v98/i2/p023106/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT APPLIED PHYSICS LETTERS

Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>