Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antimatter sticks around

26.09.2011
The entrapment of antimatter for 16 minutes allows for tests of the foundations of physics

By successfully confining atoms of antihydrogen for an unprecedented 1,000 seconds, an international team of researchers called the ALPHA Collaboration has taken a step towards resolving one of the grand challenges of modern physics: explaining why the Universe is made almost entirely of matter, when matter and antimatter are symmetric, with identical mass, spin and other properties.

The achievement is remarkable because antimatter instantly disappears on contact with regular matter such that confining antimatter requires the use of exotic technology.

The collaboration of 39 researchers, including Daniel Miranda Silveira and Yasunori Yamazaki from the RIKEN Advanced Science Institute, Wako, trapped antihydrogen inside a ‘bottle’ defined by a set of magnetic fields created by an octupole magnetic coil and a pair of mirror coils (Fig. 1). The bottle could not confine antihydrogen atoms unless they had extremely low energy, which represents a particular problem because antimatter is made through an extremely energetic process; and any cooling procedures must prevent antimatter and matter from meeting. In a previous ALPHA Collaboration experiment, the researchers succeeded in confining 38 antihydrogen atoms for at least one-fifth of a second.

Buoyed by their success, the collaboration focused on further cooling the antihydrogen atoms. Advances they made to two techniques proved especially fruitful. The first, evaporative cooling, relies on the fact that any collection of antiparticles will include some that are more energetic than others. By confining this collection inside an energy potential that lets only the most energetic particles escape, or evaporate, the entire collection can be effectively cooled, and can reach hundreds of degrees Celsius below freezing, Yamazaki explains. The second technique, autoresonant mixing, uses a technique called phase locking to mix the two constituents of antihydrogen—antiprotons and positrons—without warming the antiprotons.

Once cooled in this way, the ALPHA Collaboration was able to trap more antimatter atoms, some for times exceeding 1,000 seconds. Critically, this is much longer than the time it takes for antimatter to relax to its lowest-energy, or ground, quantum mechanical state, which is a prerequisite for studying its properties with laser and microwave spectroscopic techniques.

Trapping antimatter atoms in this way will allow physicists to address questions regarding the symmetry between matter and antimatter, which is currently understood to be a foundational property of physics, says Yamazaki. “If we see even a slight difference between hydrogen and antihydrogen properties, then the standard model of physics will need to be rewritten, and our understanding of the Universe will change.”

References

Andresen, G.B., Ashkezari, M.D., Baquero-Ruiz, M., Bertsche, W., Bowe, P.D., Butler, E., Cesar, C.L., Charlton, M., Deller, A., Eriksson, S. et al. Confinement of antihydrogen for 1,000 seconds. Nature Physics 7, 558–564 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>