Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames laboratory physicist develops 'electrifying' theory

19.08.2008
Analysis will improve superconducting fault-current limiters

John R. Clem, a physicist at the U.S. Department of Energy’s Ames Laboratory, has developed a theory that will help build future superconducting alternating-current fault-current limiters for electricity transmission and distribution systems.

Clem’s work identifies design strategies that can reduce costs and improve efficiency in a bifilar fault-current limiter, a new and promising type of superconducting fault-current limiter.

“I was able to theoretically confirm that planned design changes to the current bifilar fault-current limiter being developed by Siemens and American Superconductor would decrease AC losses in the system,” said Clem. “My calculations are good news for the future of the device.”

Fault-current limiters protect power grids from sudden spikes in power, much like household surge protectors are used to save televisions and computers from damage during a lightning strike. Limiting fault currents is becoming an increasingly critical issue for large urban utilities, since these currents grow along with growing electric power loads. Superconductors enable a novel and very promising type of fault current limiter — or “firewall” — that rapidly switches to a resistive state when current exceeds the superconductors critical current. At the same time, in normal operation, the superconductors’ near-zero AC resistance minimizes power loss and makes the fault current limiter effectively “invisible” in the electric grid.

Clem analyzed a type of fault-current limiter, called a bifilar fault-current limiter, developed by Siemens and American Superconductor Corporation, who are now under contract with the DOE to demonstrate the technology at transmission voltages in the power grid of Southern California Edison. The team also includes Nexans, which is developing the terminations for the transmission fault-current limiter, and Air Liquide, which is providing the cryogenic cooling system.

Bifilar fault-current limiters are made from many turns of insulated superconducting tape wound into a coil shaped like a disk or a pancake. The tape consists of a thin, flat strip of superconducting material sandwiched between two strips of stainless steel. In the bifilar fault-current limiter design, adjacent tapes in the pancake coil carry current in opposite directions to effectively cancel out each tape’s magnetic fields, thereby limiting electrical losses.

Siemens and American Superconductor were seeking to optimize the performance of their bifilar design. They asked Clem to predict how AC losses would change as the width of the tape is increased. Clem reported his findings, "Field and current distributions and ac losses in a bifilar stack of superconducting strips," in a recent issue of Physical Review B.

“I modeled the bifilar design as an infinite stack of superconducting tapes, in which adjacent tapes carry current in opposite directions,” said Clem. “I was able to find an exact solution for the magnetic fields and currents that are generated in such a stack of tapes. Once I calculated how the magnetic flux penetrates into the tape, I then could calculate how much energy is lost in each current cycle for different tape widths and spacings between adjacent tapes.”

“Clem’s result was not obvious since there are competing mechanisms for AC loss in the bifilar configuration. It turns out that for typical parameters, when the spacing between adjacent tapes is small enough, the result is very simple: AC losses decrease as the tape width increases and the spacing decreases,” said Alex Malozemoff, chief technical officer of American Superconductor. “This result is helping to guide us and our partner Siemens in an optimized design for a fault- current limiter in a major DOE-sponsored program, and it is expected to open a path to a commercial product in the future.”

Clem’s research was funded by the DOE Office of Science, Basic Energy Sciences Office.

Ames Laboratory is a U.S. Department of Energy Office of Science laboratory operated for the DOE by Iowa State University. The Lab conducts research into various areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration .

Breehan G Lucchesi | EurekAlert!
Further information:
http://ww.ameslab.gov

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>