Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


All segments of first light-generating system installed in world’s brightest X-ray laser


In the metropolitan area of Hamburg, the installation of the 35 segments of the first of three X-ray light producing components of the European XFEL has been completed. Set into one of the facility’s tunnels, the segments are the core part of three systems called undulators, which are each up to 210 metres long and will produce X-ray laser light exceeding the intensity of conventional X-ray sources by a billion times. These pulses of X-ray radiation are the basis for new revolutionary experimental techniques that will allow scientists to study the nanocosmos, with applications in many fields including biochemistry, astrophysics, and materials science.

The undulator installation is a major step towards the completion of the European XFEL, a 3.4 km-long X-ray free-electron laser facility that will be the world’s brightest X-ray source when completed. It is also one of Europe’s largest research projects and is due to open to users for research in 2017.

Undulator segments in the photon tunnel on 11 January 2016

“With the 35 segments of the first undulator beam line in place, we have clearly reached a very important milestone in the construction of our facility”, says European XFEL Managing Director Prof. Massimo Altarelli. “The X-ray flashes produced in these systems are the basis for the future research at the European XFEL. We are looking forward to 2017, when they will be used to investigate the smallest details of the structure and function of matter in the molecular world.”

Each of the 35 segments is 5 m long, weighs 7.5 t, and is composed of two girders facing one another, each holding a line of alternating strong permanent magnets. When accelerated electrons pass through the field of alternating polarity generated by the magnets, ultrashort flashes of X-ray laser light are produced. Components between adjacent segments help ensure a consistent magnetic field between them, and control systems allow mechanical movement of components within the undulator, which allows generation of a large spectrum of photon wavelengths.

Design, development, and prototyping work started approximately eight years ago in a joint collaboration with DESY, European XFEL’s largest shareholder. The same technology is also used in a number of projects at DESY, including the X-ray free-electron laser FLASH and the PETRA III storage ring light source.

The undulator system was built through a multinational collaboration. The challenging production involved DESY and Russian, German, Swiss, Italian, Slovenian, Swedish, and Chinese institutes and companies under the leadership of the undulator group of the European XFEL. This includes a number in-kind contributions such as electromagnets for the electron beamline designed and manufactured at several institutes in Russia and tested in Sweden; temperature monitoring units from the Manne Siegbahn Laboratory in Sweden; and movers, phase shifters, and control systems designed and manufactured by the research centre CIEMAT in Spain.

“This was a true synergetic collaboration”, says Joachim Pflüger, group leader of the European XFEL undulator group. “The resources and experience of DESY were essential for the development of the undulator systems. Now there is a great mutual benefit!”

This first completed undulator will generate short-wavelength “hard” X-rays that will be used for experiments with a focus on structural biology and ultrafast chemistry. All three of the undulators planned for the starting phase of the European XFEL will be operational by the end of 2016.

About European XFEL

The European XFEL, currently under construction in the Hamburg area, will be an international research facility of superlatives: 27 000 X-ray flashes per second and a brilliance that is a billion times higher than that of the best conventional X-ray sources will open up completely new opportunities for science. Research groups from around the world will be able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional “photos” of the nanoworld, “film” chemical reactions, and study processes such as those occurring deep inside planets. The construction and operation of the facility is entrusted to the European XFEL GmbH, a non-profit company that cooperates closely with the research centre DESY and other organizations worldwide. By the time the facility starts user operation in 2017, the company will have a workforce of about 280 employees. With construction and commissioning costs of 1.22 billion euro (at 2005 price levels) and a total length of 3.4 kilometres, the European XFEL is one of the largest and most ambitious European research projects to date. At present, 11 countries have signed the European XFEL convention: Denmark, France, Germany, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, and Switzerland.

Press contact:

Dr. Bernd Ebeling
+49 40 8998 6921
+49 40 8998 2020 Fax

Weitere Informationen: Pictures of the undulator segments More about European XFEL

Dr. Bernd Ebeling | idw - Informationsdienst Wissenschaft
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>