Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quantum logic gate between light and matter

10.04.2014

Scientists at MPQ successfully process quantum information with a system comprising an optical photon and a trapped atom.

When it comes to recognizing complex patterns or to decoding encrypted messages, conventional computers reach their limits. A whole new quality in the communication and processing of data is expected from a technology that exploits the special properties of quantum particles such as superposition and entanglement.


Central part of the experimental setup: A single atom is trapped in the narrow gap between two highly reflecting mirrors (light blue) that form an optical resonator. Reflection of single photons from the resonator implements a quantum logic operation between the atom and the photons. Graphic: Andreas Reiserer, MPQ, Quantum Dynamics Division.

Scientists around the world pursue a variety of different concepts towards the development of such a quantum computer. Prof. Gerhard Rempe, Director at the MPQ and head of the Quantum Dynamics Division, follows the strategy of combining two rather dissimilar techniques: quantum communication using photons, and information processing using stationary atoms.

His team has now for the first time realized a quantum logic gate between a single photon and a single atom (Nature, 10 April 2014). The development of this hybrid device could be a milestone on the path to a scalable and universal quantum computer.

Any modern computer operates according to a mathematical principle that was developed by German polymath Gottfried Wilhelm Leibniz more than 300 years ago: information can be encoded in the binary system and processed via the application of logic operators. Logic gates are based on this principle. They deterministically generate output signals for any combination of input signals according to a so-called truth table. Nowadays, computers contain many millions of logic gates in the form of electronic circuits.

In the experiment described here, the binary states 0 and 1 are represented by the two spin orientations of an atom (upwards or downwards), and by two polarization states of an optical photon (left or right circular), respectively.

In contrast to classical bits, these “quantum bits” can be in a coherent superposition of both states. In order to realize a quantum gate, the atom is trapped inside a cavity which is made of two high-finesse mirrors. The properties of the cavity are chosen in such a way that atom and cavity form a strongly coupled system. The light quanta are prepared as faint laser pulses containing less than one photon on average.

In a former experiment it has been shown that – by a proper choice of parameters – the light quanta are always reflected. What matters is the fact that for certain combinations of atomic and photonic input states the photons are reflected at the first mirror. For other combinations, however, they first enter the cavity, subsequently leaving it on the same path. Thereby, they experience a phase shift of 180 degrees. “This conditional phase shift is the prerequisite for the implementation of a truth table assigning output signals to any combination of input bits in a deterministic way, similar to a classical logic gate.”, Dr. Stephan Ritter explains.

“In our experiment we measure both the polarization of the reflected photons and the spin orientation of the atom after the gate operation. At present, we achieve an efficiency of about 70%. By further improving the mirror parameters this value could be significantly improved”, Andreas Reiserer says.

These measurements demonstrate that the hybrid atom-photon system can act as a classical logic gate. However, the true advantage of a quantum gate compared to a classical one is its ability to generate entangled states from separable input states. In order to test this specific behaviour, the scientists chose a combination of input bits that – according to the rules of quantum mechanics – must lead to an entangled state of atom and photon after the gate operation. Also in this case the gate mechanism worked as expected.

By successively sending two laser pulses onto the system the physicists could even achieve entanglement between the atom and two photons. By clever manipulation of the atom in a second step it was disentangled, leaving a pair of two entangled photons. “These measurements demonstrate the versatility of the gate mechanism that even provides an interaction between two photons”, Norbert Kalb says. “The mechanism should also allow generating entangled cluster states that consist of the atom and several photons.”

The development of this hybrid quantum logic gate could be a big step towards a universal quantum computer. “Quantum communication, using flying photons, and data processing with atoms or ions have been regarded as separate research fields so far”, Prof. Gerhard Rempe says. “In our experiment we merge both techniques. In particular, our quantum gate could be easily implemented in a network in which atoms serve as stationary nodes for the storage of information, whereas photons transmit the information between these nodes, even over large distances. In this way we hope to contribute to the realization of a scalable quantum computer.” Olivia Meyer-Streng

Original publication:

Andreas Reiserer, Norbert Kalb, Gerhard Rempe, and Stephan Ritter
A quantum gate between a flying optical photon and a single trapped atom
Nature, 10 April 2014

Contact:

Prof. Dr. Gerhard Rempe
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -701 /Fax: -311
E-mail: gerhard.rempe@mpq.mpg.de

Dr. Stephan Ritter
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -728 /Fax: -395
E-mail: stephan.duerr@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
MPQ Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

Further reports about: MPQ Max-Planck-Institut Phone Quantenoptik Quantum combination photons polarization processing signals

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>