Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A quantum logic gate between light and matter


Scientists at MPQ successfully process quantum information with a system comprising an optical photon and a trapped atom.

When it comes to recognizing complex patterns or to decoding encrypted messages, conventional computers reach their limits. A whole new quality in the communication and processing of data is expected from a technology that exploits the special properties of quantum particles such as superposition and entanglement.

Central part of the experimental setup: A single atom is trapped in the narrow gap between two highly reflecting mirrors (light blue) that form an optical resonator. Reflection of single photons from the resonator implements a quantum logic operation between the atom and the photons. Graphic: Andreas Reiserer, MPQ, Quantum Dynamics Division.

Scientists around the world pursue a variety of different concepts towards the development of such a quantum computer. Prof. Gerhard Rempe, Director at the MPQ and head of the Quantum Dynamics Division, follows the strategy of combining two rather dissimilar techniques: quantum communication using photons, and information processing using stationary atoms.

His team has now for the first time realized a quantum logic gate between a single photon and a single atom (Nature, 10 April 2014). The development of this hybrid device could be a milestone on the path to a scalable and universal quantum computer.

Any modern computer operates according to a mathematical principle that was developed by German polymath Gottfried Wilhelm Leibniz more than 300 years ago: information can be encoded in the binary system and processed via the application of logic operators. Logic gates are based on this principle. They deterministically generate output signals for any combination of input signals according to a so-called truth table. Nowadays, computers contain many millions of logic gates in the form of electronic circuits.

In the experiment described here, the binary states 0 and 1 are represented by the two spin orientations of an atom (upwards or downwards), and by two polarization states of an optical photon (left or right circular), respectively.

In contrast to classical bits, these “quantum bits” can be in a coherent superposition of both states. In order to realize a quantum gate, the atom is trapped inside a cavity which is made of two high-finesse mirrors. The properties of the cavity are chosen in such a way that atom and cavity form a strongly coupled system. The light quanta are prepared as faint laser pulses containing less than one photon on average.

In a former experiment it has been shown that – by a proper choice of parameters – the light quanta are always reflected. What matters is the fact that for certain combinations of atomic and photonic input states the photons are reflected at the first mirror. For other combinations, however, they first enter the cavity, subsequently leaving it on the same path. Thereby, they experience a phase shift of 180 degrees. “This conditional phase shift is the prerequisite for the implementation of a truth table assigning output signals to any combination of input bits in a deterministic way, similar to a classical logic gate.”, Dr. Stephan Ritter explains.

“In our experiment we measure both the polarization of the reflected photons and the spin orientation of the atom after the gate operation. At present, we achieve an efficiency of about 70%. By further improving the mirror parameters this value could be significantly improved”, Andreas Reiserer says.

These measurements demonstrate that the hybrid atom-photon system can act as a classical logic gate. However, the true advantage of a quantum gate compared to a classical one is its ability to generate entangled states from separable input states. In order to test this specific behaviour, the scientists chose a combination of input bits that – according to the rules of quantum mechanics – must lead to an entangled state of atom and photon after the gate operation. Also in this case the gate mechanism worked as expected.

By successively sending two laser pulses onto the system the physicists could even achieve entanglement between the atom and two photons. By clever manipulation of the atom in a second step it was disentangled, leaving a pair of two entangled photons. “These measurements demonstrate the versatility of the gate mechanism that even provides an interaction between two photons”, Norbert Kalb says. “The mechanism should also allow generating entangled cluster states that consist of the atom and several photons.”

The development of this hybrid quantum logic gate could be a big step towards a universal quantum computer. “Quantum communication, using flying photons, and data processing with atoms or ions have been regarded as separate research fields so far”, Prof. Gerhard Rempe says. “In our experiment we merge both techniques. In particular, our quantum gate could be easily implemented in a network in which atoms serve as stationary nodes for the storage of information, whereas photons transmit the information between these nodes, even over large distances. In this way we hope to contribute to the realization of a scalable quantum computer.” Olivia Meyer-Streng

Original publication:

Andreas Reiserer, Norbert Kalb, Gerhard Rempe, and Stephan Ritter
A quantum gate between a flying optical photon and a single trapped atom
Nature, 10 April 2014


Prof. Dr. Gerhard Rempe
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -701 /Fax: -311

Dr. Stephan Ritter
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -728 /Fax: -395

Dr. Olivia Meyer-Streng
Press & Public Relations
MPQ Garching, Germany
Phone: +49 (0)89 / 32 905 -213

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

Further reports about: MPQ Max-Planck-Institut Phone Quantenoptik Quantum combination photons polarization processing signals

More articles from Physics and Astronomy:

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

nachricht Iowa State astronomers say comet fragments best explanation of mysterious dimming star
25.11.2015 | Iowa State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>