Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quantum logic gate between light and matter

10.04.2014

Scientists at MPQ successfully process quantum information with a system comprising an optical photon and a trapped atom.

When it comes to recognizing complex patterns or to decoding encrypted messages, conventional computers reach their limits. A whole new quality in the communication and processing of data is expected from a technology that exploits the special properties of quantum particles such as superposition and entanglement.


Central part of the experimental setup: A single atom is trapped in the narrow gap between two highly reflecting mirrors (light blue) that form an optical resonator. Reflection of single photons from the resonator implements a quantum logic operation between the atom and the photons. Graphic: Andreas Reiserer, MPQ, Quantum Dynamics Division.

Scientists around the world pursue a variety of different concepts towards the development of such a quantum computer. Prof. Gerhard Rempe, Director at the MPQ and head of the Quantum Dynamics Division, follows the strategy of combining two rather dissimilar techniques: quantum communication using photons, and information processing using stationary atoms.

His team has now for the first time realized a quantum logic gate between a single photon and a single atom (Nature, 10 April 2014). The development of this hybrid device could be a milestone on the path to a scalable and universal quantum computer.

Any modern computer operates according to a mathematical principle that was developed by German polymath Gottfried Wilhelm Leibniz more than 300 years ago: information can be encoded in the binary system and processed via the application of logic operators. Logic gates are based on this principle. They deterministically generate output signals for any combination of input signals according to a so-called truth table. Nowadays, computers contain many millions of logic gates in the form of electronic circuits.

In the experiment described here, the binary states 0 and 1 are represented by the two spin orientations of an atom (upwards or downwards), and by two polarization states of an optical photon (left or right circular), respectively.

In contrast to classical bits, these “quantum bits” can be in a coherent superposition of both states. In order to realize a quantum gate, the atom is trapped inside a cavity which is made of two high-finesse mirrors. The properties of the cavity are chosen in such a way that atom and cavity form a strongly coupled system. The light quanta are prepared as faint laser pulses containing less than one photon on average.

In a former experiment it has been shown that – by a proper choice of parameters – the light quanta are always reflected. What matters is the fact that for certain combinations of atomic and photonic input states the photons are reflected at the first mirror. For other combinations, however, they first enter the cavity, subsequently leaving it on the same path. Thereby, they experience a phase shift of 180 degrees. “This conditional phase shift is the prerequisite for the implementation of a truth table assigning output signals to any combination of input bits in a deterministic way, similar to a classical logic gate.”, Dr. Stephan Ritter explains.

“In our experiment we measure both the polarization of the reflected photons and the spin orientation of the atom after the gate operation. At present, we achieve an efficiency of about 70%. By further improving the mirror parameters this value could be significantly improved”, Andreas Reiserer says.

These measurements demonstrate that the hybrid atom-photon system can act as a classical logic gate. However, the true advantage of a quantum gate compared to a classical one is its ability to generate entangled states from separable input states. In order to test this specific behaviour, the scientists chose a combination of input bits that – according to the rules of quantum mechanics – must lead to an entangled state of atom and photon after the gate operation. Also in this case the gate mechanism worked as expected.

By successively sending two laser pulses onto the system the physicists could even achieve entanglement between the atom and two photons. By clever manipulation of the atom in a second step it was disentangled, leaving a pair of two entangled photons. “These measurements demonstrate the versatility of the gate mechanism that even provides an interaction between two photons”, Norbert Kalb says. “The mechanism should also allow generating entangled cluster states that consist of the atom and several photons.”

The development of this hybrid quantum logic gate could be a big step towards a universal quantum computer. “Quantum communication, using flying photons, and data processing with atoms or ions have been regarded as separate research fields so far”, Prof. Gerhard Rempe says. “In our experiment we merge both techniques. In particular, our quantum gate could be easily implemented in a network in which atoms serve as stationary nodes for the storage of information, whereas photons transmit the information between these nodes, even over large distances. In this way we hope to contribute to the realization of a scalable quantum computer.” Olivia Meyer-Streng

Original publication:

Andreas Reiserer, Norbert Kalb, Gerhard Rempe, and Stephan Ritter
A quantum gate between a flying optical photon and a single trapped atom
Nature, 10 April 2014

Contact:

Prof. Dr. Gerhard Rempe
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -701 /Fax: -311
E-mail: gerhard.rempe@mpq.mpg.de

Dr. Stephan Ritter
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -728 /Fax: -395
E-mail: stephan.duerr@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
MPQ Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

Further reports about: MPQ Max-Planck-Institut Phone Quantenoptik Quantum combination photons polarization processing signals

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>