Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A heart beats to a different drummer

Researchers pace embryonic heart with laser

Love, exercise and, new research shows, an infrared laser can make a heart beat faster.

Scientists at Case Western Reserve University and Vanderbilt University found that pulsed light can pace contractions in an avian embryonic heart, with no apparent damage to the tissue. The work, "Optical pacing of the embryonic heart," will be published in the advanced online issue of Nature Photonics on Aug. 15, 2010.

According to the scientists, this non-invasive device may prove an effective tool in understanding how environmental factors that alter an embryo's heart rate lead to congenital defects. It may also lead to investigations of cardiac electrophysiology at the cellular, tissue and organ levels, and possibly the development of a new generation of pacemakers.

"The mechanisms behind many congenital defects are not well known. But, there is a suspicion that when the early embryonic heart beats slower or faster than normal, that changes gene regulation and changes development," said Michael Jenkins, a postdoctoral researcher in biomedical engineering at Case Western Reserve.

"If we can precisely control pacing, we could figure out how structure, function and gene expression all work together," said Michiko Watanabe, PhD, professor of pediatrics, genetics and anatomy at Case Western Reserve School of Medicine.

Jenkins came up with the idea to try the infrared laser on an embryonic heart. He stumbled on an obscure paper from the 1960s in which researchers found that continuous exposure to visible light accelerated the heart rate of an embryonic chicken. He also knew of the success that Eric D. "Duco" Jansen, a professor of biomedical engineering at Vanderbilt University, had using an infrared laser to stimulate nerves. He then hypothesized that pulsed infrared light may enable pacing of the embryonic heart.

Case Western Reserve explained the proposed experiment to Jansen, who agreed to collaborate.

A video of the embryonic heart pacing, recorded by Jenkins, may be seen at:

How does the laser make the heart beat?

The investigators believe a pulse of infrared light creates a temperature gradient in heart tissue that opens ion channels in a cascade along a heart cell. This effect spurs along an electrical impulse that makes the heart contract.

It's early in the research, "but we think this has exciting implications, especially if we can extend this into the adult heart," said Andrew Rollins, professor of biomedical engineering at Case Western Reserve.

Rollins' lab is now experimenting with adult heart tissue, to determine whether the laser could be used as an implantable pacemaker or to pace an adult heart during surgery or other clinical work.

Watanabe, who specializes in heart development and has studied heart conduction in the developing heart, said the findings could lead to the development of a pacemaker for a child's or baby's heart or even in utero. However, many more studies have to be done to show it would work and be safe. In a young heart, electrodes can cause damage and long term use of traditional pacemakers can lead to heart failure, she said.

Kevin Mayhood | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>