Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A dynamical quantum simulator

An international collaboration demonstrates the superiority of a dynamical quantum simulator over state-of-the-art numerical calculations.

The key prospect of a quantum simulator is to access new physics that the best known classical algorithms can no longer keep track of.

Figure: (left) Schematics of the experiments probing the non-equilibrium dynamics emerging when an initially prepared density wave of ultracold atoms in an optical lattice is subjected to a tunnel coupling and inter-particle interactions. (right) The experimental data is well reproduced by parameter-free numerical simulations (black line) which however break down for longer evolution times. Here, the experiment (blue circles) can still deliver reliable results, serving as a quantum simulator of many-body dynamics. Grafik: MPQ

For the first time, a group around Professor Immanuel Bloch (Max Planck Institute of Quantum Optics and Ludwig-Maximilians-Universität Munich), in collaboration with theoretical physicists from the Ludwig-Maximilians-Universität Munich of the group of Prof. Ulrich Schollwöck, the Forschungszentrum Jülich, the Institute for Advanced Study Berlin, and the University of Queensland (Australia), has demonstrated this superiority by following the dynamics of a quantum system of strongly correlated ultracold atoms in an optical lattice.

In particular they were able to follow the relaxation of the isolated system which was initialized in a state far from equilibrium. The experimentally observed dynamics were in excellent agreement with numerical calculations which are available only for short evolution times (Nature Physics, AOP, 19 February 2012, Doi:10.1038/nphys2232). This demonstrates that many-body systems of ultracold atoms can be used as quantum simulators in a regime which is not accessible for classical computers.

The concept of thermalization and thermal equilibrium is fundamental to a large part of our everyday life. It explains, for example, how hot coffee in a cup cools down to room temperature while also heating the room a little, and how the motion of the molecules in the coffee that is induced by stirring it with a spoon will dampen out until everything is at rest again. The answer to the same fundamental question posed in the context of a closed quantum system of interacting particles brought out of equilibrium remains elusive to the present day. The complexity of the underlying quantum dynamics as well as the possibility of the quantum particles to become entangled with one another makes even sophisticated numerical methods fail in the attempt to address this problem for large particle numbers and long timescales. Experiments with ultracold rubidium atoms carried out in the group of Professor Immanuel Bloch now allow the scientists to follow the non-equilibrium evolution of an interacting quantum many-body system on a time-scale much longer than those accessible by exact numerical methods.

In the experiments, an extremely cold gas of rubidium atoms was loaded into an optical lattice: a periodic structure of bright and dark areas, created by the interference of counter-propagating laser beams. In this structure, the atoms are held in either dark or bright spots, depending on the wavelength of the light, and therefore align themselves in a regular pattern. The use of an additional light field with twice the spatial period allowed the scientists to pairwise group adjacent lattice sites in an optical superlattice and to further manipulate the regular pattern to obtain a configuration with alternatingly filled and empty sites along one spatial direction. Starting from this ’density wave’ state far from equilibrium, the atoms are then allowed to tunnel along the same spatial direction and to collide with one and another, leading to a complex many-body dynamics. After a certain relaxation-time, the system’s properties were read out in terms of local densities, tunnel currents and nearest-neighbour correlations with the help of the superlattice. These observables were probed for a variety of lattice heights and evolution times, showing a rapid relaxation to (quasi-) steady state values.

On short timescales, parameter-free numerical simulations carried out by collaborators of several research institutes could track the many-body dynamics and therefore benchmark the experimental quantum simulation. For long evolution times, however, these classical methods have to fail for the concomitant entanglement growth rendering a classical description infeasible. The experiment, on the other hand, tracks the evolution well beyond the time scale of theoretical predictions. This demonstrates that this system of ultracold atoms can be used as an efficient simulator for relaxation physics in many-body systems and is outperforming the best classical simulation so far. Furthermore, the experiment gives insight into quantum mechanical tunnel processes as well as (quasi-) steady state properties after relaxation. It opens up new avenues in the study of cold atoms in non-equilibrium which leads to a better understanding of fundamental problems in condensed matter physics. [ST/OM]

Original Publication:
S. Trotzky, Y-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert & I. Bloch
Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas

Nature Physics, AOP, 19 February 2012, Doi:10.1038/nphys2232


Prof. Dr. Immanuel Bloch
Chair of Quantum Optics
LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 89 / 32905 -138
Prof. Dr. Ulrich Schollwöck
Chair of Theoretical Nanophysics, LMU München
Theresienstr. 37
80333 München
Phone: +49 89 / 2180 -4117
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 89 / 32905 -213
E-mail: olivia.meyer-streng@mpq.mpg

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>



Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

More VideoLinks >>>