Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Cosmic Crash of Unexpected Proportions

02.09.2011
An international research team investigates the distant galaxy cluster Abell 2744

The biggest known cosmic collision in the Universe took place in a distant galaxy cluster called Abell 2744. That is the conclusion of an international team of scientists investigating the debris of this massive crash with novel research methods that were developed at Heidelberg University’s Institute of Theoretical Astrophysics.


The image shows the galaxy cluster Abell 2744. It combines observations in the visible light spectrum with X-ray images of satellite Chandra (red) and clouds of dark matter (blue). The particularities of the system are clearly visible, for example a clump of dark matter with no stars or gas (northwest sector) and a clump of galaxies and dark matter without gas (western sector). The scale indicates a distance of 250,000 parsecs, approximately nine times the diameter of the visible part of our own galaxy, the Milky Way. In astronomy, the compass points East and West are switched, as shown at the bottom right corner of the image.
Image source: NASA, ESA, ESO, CXC, J. Merten (Heidelberg/Bologna) & D. Coe (STScl)

These methods enabled the scientists to reconstruct the course of events over a period of several hundreds of millions of years and thus to understand how large-scale structures develop in the Universe based on the interaction of different kinds of matter. Researchers from Brazil, Canada, Germany, Israel, Italy, Scotland, Spain, Taiwan and the United States of America collaborated on the investigation.

The astrophysicists observed the galaxy cluster Abell 2744 from an unprecedented number of angles with high-performance telescopes, among them the Very Large Telescope of the European Southern Observatory (ESO) in Chile, the Japanese Subaru Telescope in Hawaii and the Hubble and Chandra space telescopes. With the data gleaned from these observations, the research team headed by astrophysicist Dr. Julian Merten of the Heidelberg Institute of Theoretical Astrophysics was able to investigate the three essential components of galaxy clusters: galaxies and their stars, intergalactic gas and dark matter.

Each of the approx. 1,000 galaxies of Abell 2744 contains many billions of stars. However, this “visible” matter only makes up about five percent of the entire mass of the galaxy cluster. The galaxies “float” in the diffuse gas that is distributed between them, Dr. Merten explains. This “intergalactic gas” comprises 20 percent of the overall mass and was heated up so intensely by the effects of gravitational forces in the galaxy cluster that it emits radiation mostly in the X-ray wavelength band. The remaining 75 percent of the galaxy cluster consist of the mysterious “dark matter”.

To understand the processes going on in Abell 2744, the scientists aimed to determine the distribution of these three components as precisely as possible. This is easily accomplished for galaxies and intergalactic gas, but dark matter is much harder to pin down. It neither emits nor absorbs light and can only be detected through its gravitational attraction. However, during his time as PhD student at the Heidelberg Graduate School of Fundamental Physics, Julian Merten devised special methods for measuring the distribution of dark matter with the aid of an effect known as gravitational lensing.

When light rays emitted by galaxies far beyond Abell 2744 cut through the massive galaxy cluster, the gravitational attraction of the unevenly distributed dark matter changes the trajectory of the light travelling through the cluster. “The rays of light are ‘bent’ more or less strongly so that the images of the background galaxies appear distorted in a characteristic way,” says Dr. Merten. “By analysing this distortion for a large number of background galaxies we are able to chart out a map showing the distribution of dark matter.”

The surprising outcome of the analysis of Abell 2744 is that this system consists of at least four different galaxy clusters that must have collided over a period of about 350 million years. “The collision obviously separated the hot gas from the dark matter and led to an unusual and fascinating distribution of the three kinds of matter,” adds Dr. Merten. In the northwest sector, the scientists found an area where dark matter was separated from the other components in an unusual way. The hot gas leads the dark matter by a large distance and the galaxies do not appear to match the position of the dark matter, either. In the western sector, the researchers came across an area that contains both dark matter and galaxies, but no hot gas. “It looks as if this gas was stripped away completely in the central region of the cluster during the collision, and was left behind,” says Dr. Merten. Because of the large number of unusual and often mysterious phenomena, the researchers have dubbed Abell 2744 “Pandora’s cluster”.

A publication on these research findings entitled “Creation of Cosmic Structure in the Complex Galaxy Cluster Merger Abell 2744” will be appearing in ”Monthly Notices of the Royal Astronomical Society”. Preprint: http://arxiv.org/abs/1103.2272.

The Institute of Theoretical Astrophysics is part of Heidelberg University's Centre for Astronomy (ZAH).

Contact:
Dr. Julian Merten
Zentrum für Astronomie der Universität Heidelberg (ZAH)
Institute of Theoretical Astrophysics
phone: +49 6221 54 8987
jmerten@uni-heidelberg.de
Communications and Marketing
Press Office, phone +49 6221 54 2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>