Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'Doubly Magic' Research Reveals Role of Nuclear Shell

07.06.2010
Researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT) and six collaborating universities have performed an unprecedented nuclear reaction experiment that explores the unique properties of the “doubly magic” radioactive isotope of 132Sn, or tin-132.

The research, published today in the journal Nature, is part of a broad scientific effort to understand nucleosynthesis, or the process by which the higher elements (those in the periodic table above iron) are created in the supernova explosions of stars.

This research focused on the so-called r-process, responsible for the creation of about half of those heavy elements. This process involves interactions at very high energies of highly unstable and rare isotopes that do not naturally occur on earth, but that can be created in the laboratory.

The research was performed at ORNL’s Holifield Radioactive Ion Beam Facility, a nuclear physics national user facility supported by the DOE Office of Science.

“Magic” nuclei define important way stations of relative stability as heavier elements are built up out of protons and neutrons (collectively known as nucleons).

Researchers relied on the “nuclear shell model” theory, which envisions the atomic nucleus as a series of shells, each representing a certain energy level and each containing a certain number of nucleons (protons or neutrons). As nucleons are added to the nucleus, they “fill” the successive shells: the first shell is filled with 2, the second with 8, and then on up to 20, 28, 50, 82, and 126, in succession. These numbers are “magic” because the nucleons in these shells are thought to be more strongly bonded--and hence relatively more stably configured--than the next nucleon that is added.

Tin-132 is a radioactive isotope of the familiar element tin with special properties--it is one of a small group of isotopes with a “magic” number of both protons and neutrons, making this nucleus “doubly magic.” It has 50 protons and 82 neutrons.

In this experiment, a neutron was transferred to a tin-132 nucleus to create tin-133, and the effects of adding this additional neutron were carefully measured.

"The experiment's measurement is critical to benchmarking the nuclear shell model, to extrapolating theoretical nuclear models beyond the reach of current experimental facilities and to simulating the synthesis of nuclei heavier than iron in the cosmos," UT Department of Physics and Astronomy researcher and lead author Kate Jones said.

In the Nature paper, the team shows that tin-132 represents a good example of the shell model paradigm and that the properties of the states of tin-133 are to a large extent determined by the last, unpaired neutron.

"As such, tin-132 can now be used as a textbook example of a doubly-magic nucleus and the principal benchmark for extrapolations to nuclei currently out of experimental reach that are crucial for production of heavy elements in stellar explosions," Jones said, adding, “Short-lived isotopes are important to astrophysical processes, and we want to understand how the heavy elements, such as those beyond iron, were produced.”

The Holifield facility enables nuclear scientists to produce beams of radioactive nuclei, then separate a particular isotope for experimentation with the world’s most powerful electrostatic accelerator.

Nuclei can be classified in three ways: stable nuclei that never decay, known radioactive nuclei, and unknown, extremely short-lived nuclei. Doubly magic nuclei have properties that make them good launching pads to explore the structure of unknown nuclei with large neutron or proton numbers that do not naturally occur on Earth.

“A century ago, all nuclear physicists could study were the stable isotopes that make up all the atoms of elements of things around us,” said Jones.

However, nuclear processes — such as those that took place to create the matter around us — produce both stable elements and radioactive isotopes with nuclei that are either proton or neutron-rich.

Witold Nazarewicz, the Holifield Facility's scientific director, explained how the experiments were performed at the ORNL facility.

“We produce some of the radioactive nuclei--the very short-lived nuclei like tin-132. We then use them as beams to further push the boundaries,” Nazarewicz said, “to get closer and closer to the territory of unknown nuclei.”

Despite being comparatively strongly bound, tin-132 itself only lasts about 40 seconds. To produce the fleeting nuclei of tin-132, scientists shot protons at a uranium target, producing a primary beam of several kinds of radioactive nuclei from which tin-132 is carefully selected.

Jones and Nazarewicz said such pioneering research is rapidly changing basic theoretical models of nuclear structure because scientists’ understanding of the inner workings of the nucleus is altered the further into unstable, neutron-rich territory they are able to observe.

“It was only a decade ago we managed to produce beams of neutron-rich isotopes by proton-induced fission of uranium” said Nazarewicz. “Now we see the nuclear structure shifting the more neutron-rich we get, and our understanding of the nuclear shells, which is basically textbook knowledge since the 1940s, will likely change.”

The research was supported by the DOE Office of Science, the National Science Foundation, and the UK Science and Technology Funding Council.

ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory
MEDIA CONTACT: Katie Freeman
ORNL Communications & External Relations
(865) 574-4160, freemanke@ornl.gov

Katie Freeman | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>