Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WPI Receives $1.2 Million Award from NIST for Groundbreaking Study of Wireless Body Area Networks

18.03.2010
Led by Wireless Information Network Pioneer Kaveh Pahlavan, the Research Aims to Spur Rapid Development of This New Medical Technology

The Center for Wireless Information Network Studies (CWINS) at Worcester Polytechnic Institute (WPI) has received a three-year, $1.2 million award from the National Institute of Standards and Technology (NIST) to conduct a groundbreaking study of the propagation of radio waves around and through the human body.

Led by Kaveh Pahlavan, professor of electrical and computer engineering and director of CWINS, the research will help speed the development of and create standards for body area networks (BANs), a new generation of wireless networks that support a variety of medical applications, from monitoring the functioning of implanted devices to helping perform virtual endoscopic exams.

The award is one of only 27 funded (from 1,300 proposals), through NIST’s AARA (American Recovery and Reinvestment Act) Measurement, Science & Engineering Grants program.

BANs are made up of compact medical sensors that can be worn by individuals or implanted in their bodies, depending upon the application. Data from the sensors are transmitted to base stations and then on to hospitals or clinics, where they may be monitored and analyzed. Data from these sensors can also be used to pinpoint the location of medical devices, for example implants or tiny sensors ingested to study the digestive system. Though most initial applications of BANs are expected to be in healthcare, the networks will likely find uses in many other areas. For example, they may be used to monitor athletes or military personnel.

BANs may make it possible for doctors and other healthcare professionals to remotely monitor patients around the clock. Data from a BAN installed in or on a person with a history of cardiac health issues, for instance, might alert doctors to heart rhythm irregularities, enabling emergency personnel to respond before a potentially fatal heart actually occurs. Similarly, BANs may make it possible for doctors to remotely monitor patients with diabetes, whose insulin levels could change abruptly, or people with seizure-causing disorders. And since BANs can be interactive, healthcare professionals could use them to deliver treatment from afar--for example, to patients with pacemakers or installed insulin pumps.

While BAN technology is still new, the industry is expected to grow rapidly in the coming years. Indeed, the FCC has recently allocated specific spectrum bands for wireless medical communications, and committees have been formed to address standardization of these emerging technologies. In fact, standardization is one of the areas that the WPI research aims to address, Pahlavan says. “Because innovations in wireless networks are based on radio propagation measurement science and engineering, standards committees devote considerable effort to measuring propagation characteristics,” he notes. “It is essential to have consistent standards in order to evaluate the respective performances of alternative wireless solutions.”

The goal of Pahlavan’s team, which enjoys an international reputation for its research on radio frequency propagation and localization in wireless data networks, is to apply what it has learned by studying larger-scale networks (from wireless local networks such as Wi-Fi to personal networks like Bluetooth) to developing a comprehensive program for measuring the characteristics of radio frequency propagation in and around the body. Measurement and modeling of radio propagation and localization at such a small scale is expected to be challenging, Pahlavan notes. His lab will use a combination of empirical measurements, computational modeling and studies of phantoms (structures that simulate the characteristics of the human body) to complete the work.

“This research will help propel the growth of this powerful technology in the United States and help pave the way for standardization for body-area networks,” Pahlavan says. “That growth, in turn, has both considerable economic implications and significant potential to improve healthcare.” In addition to Pahlavan, the WPI team includes Sergey Makarov, professor of electrical and computer engineering, Allen Levesque, adjunct professor of electrical and computer engineering, and Ferit Akgul and Yunxing Ye, doctoral candidates in electrical and computer engineering.

About Worcester Polytechnic Institute
Founded in 1865 in Worcester, Mass., WPI was one of the nation's first engineering and technology universities. WPI's14 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, management, the social sciences, and the humanities and arts, leading to bachelor’s, master’s and PhD degrees. WPI's world-class faculty work with students in a number of cutting-edge research areas, leading to breakthroughs and innovations in such fields as biotechnology, fuel cells, and information security, materials processing, and nanotechnology. Students also have the opportunity to make a difference to communities and organizations around the world through the university's innovative Global Perspective Program. There are more than 25 WPI project centers throughout North America and Central America, Africa, Australia, Asia, and Europe.
Contact:
Michael Dorsey, Director of Research Communications
Worcester Polytechnic Institute
Worcester, Massachusetts
508-831-5609, mwdorsey@wpi.edu

Michael Dorsey | Worcester Polytechnic Institute
Further information:
http://www.wpi.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>