Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WPI Receives $1.2 Million Award from NIST for Groundbreaking Study of Wireless Body Area Networks

18.03.2010
Led by Wireless Information Network Pioneer Kaveh Pahlavan, the Research Aims to Spur Rapid Development of This New Medical Technology

The Center for Wireless Information Network Studies (CWINS) at Worcester Polytechnic Institute (WPI) has received a three-year, $1.2 million award from the National Institute of Standards and Technology (NIST) to conduct a groundbreaking study of the propagation of radio waves around and through the human body.

Led by Kaveh Pahlavan, professor of electrical and computer engineering and director of CWINS, the research will help speed the development of and create standards for body area networks (BANs), a new generation of wireless networks that support a variety of medical applications, from monitoring the functioning of implanted devices to helping perform virtual endoscopic exams.

The award is one of only 27 funded (from 1,300 proposals), through NIST’s AARA (American Recovery and Reinvestment Act) Measurement, Science & Engineering Grants program.

BANs are made up of compact medical sensors that can be worn by individuals or implanted in their bodies, depending upon the application. Data from the sensors are transmitted to base stations and then on to hospitals or clinics, where they may be monitored and analyzed. Data from these sensors can also be used to pinpoint the location of medical devices, for example implants or tiny sensors ingested to study the digestive system. Though most initial applications of BANs are expected to be in healthcare, the networks will likely find uses in many other areas. For example, they may be used to monitor athletes or military personnel.

BANs may make it possible for doctors and other healthcare professionals to remotely monitor patients around the clock. Data from a BAN installed in or on a person with a history of cardiac health issues, for instance, might alert doctors to heart rhythm irregularities, enabling emergency personnel to respond before a potentially fatal heart actually occurs. Similarly, BANs may make it possible for doctors to remotely monitor patients with diabetes, whose insulin levels could change abruptly, or people with seizure-causing disorders. And since BANs can be interactive, healthcare professionals could use them to deliver treatment from afar--for example, to patients with pacemakers or installed insulin pumps.

While BAN technology is still new, the industry is expected to grow rapidly in the coming years. Indeed, the FCC has recently allocated specific spectrum bands for wireless medical communications, and committees have been formed to address standardization of these emerging technologies. In fact, standardization is one of the areas that the WPI research aims to address, Pahlavan says. “Because innovations in wireless networks are based on radio propagation measurement science and engineering, standards committees devote considerable effort to measuring propagation characteristics,” he notes. “It is essential to have consistent standards in order to evaluate the respective performances of alternative wireless solutions.”

The goal of Pahlavan’s team, which enjoys an international reputation for its research on radio frequency propagation and localization in wireless data networks, is to apply what it has learned by studying larger-scale networks (from wireless local networks such as Wi-Fi to personal networks like Bluetooth) to developing a comprehensive program for measuring the characteristics of radio frequency propagation in and around the body. Measurement and modeling of radio propagation and localization at such a small scale is expected to be challenging, Pahlavan notes. His lab will use a combination of empirical measurements, computational modeling and studies of phantoms (structures that simulate the characteristics of the human body) to complete the work.

“This research will help propel the growth of this powerful technology in the United States and help pave the way for standardization for body-area networks,” Pahlavan says. “That growth, in turn, has both considerable economic implications and significant potential to improve healthcare.” In addition to Pahlavan, the WPI team includes Sergey Makarov, professor of electrical and computer engineering, Allen Levesque, adjunct professor of electrical and computer engineering, and Ferit Akgul and Yunxing Ye, doctoral candidates in electrical and computer engineering.

About Worcester Polytechnic Institute
Founded in 1865 in Worcester, Mass., WPI was one of the nation's first engineering and technology universities. WPI's14 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, management, the social sciences, and the humanities and arts, leading to bachelor’s, master’s and PhD degrees. WPI's world-class faculty work with students in a number of cutting-edge research areas, leading to breakthroughs and innovations in such fields as biotechnology, fuel cells, and information security, materials processing, and nanotechnology. Students also have the opportunity to make a difference to communities and organizations around the world through the university's innovative Global Perspective Program. There are more than 25 WPI project centers throughout North America and Central America, Africa, Australia, Asia, and Europe.
Contact:
Michael Dorsey, Director of Research Communications
Worcester Polytechnic Institute
Worcester, Massachusetts
508-831-5609, mwdorsey@wpi.edu

Michael Dorsey | Worcester Polytechnic Institute
Further information:
http://www.wpi.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>