Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What's Next in Diets: Chili Peppers?

09.02.2015

Researchers at the University of Wyoming discover that adding capsaicin from chili peppers to a diet can help to prevent weight gain in mice on high-fat diet

Don't go chomping on a handful of chili peppers just yet, but there may be help for hopeful dieters in those fiery little Native American fruits.


Thyagarajan

Spice up your diet with peppers every day to keep obesity away.

A large percentage of the world's population -- fully one third, by the World Health Organization's estimates -- is currently overweight or obese. This staggering statistics has made finding ways to address obesity a top priority for many scientists around the globe, and now a group of researchers at the University of Wyoming has found promise in the potential of capsaicin -- the chief ingredient in chili peppers -- as a diet-based supplement.

The temptation to eat fatty foods is often so strong that, for many, it can override or overpower any dietary restrictions. As a solution to this problem, a group of researchers at the University of Wyoming developed a novel approach to stimulate energy metabolism—without the need to restrict calorie intake.

During the Biophysical Society's 59th Annual Meeting in Baltimore, Md., Feb. 7-11, 2015, the researchers from the laboratory of Dr. Baskaran Thyagarajan, University of Wyoming will describe how dietary capsaicin may stimulate thermogenesis and energy burning by activating its receptors, which are expressed in white and brown fat cells. This may help to prevent and manage obesity and other related health complications such as Type 2 diabetes, high blood pressure, and cardiovascular diseases -- though this effect has not yet been demonstrated in carefully-controlled clinical trials.

"Obesity is caused by an imbalance between calorie intake and energy dissipation," explained Vivek Krishnan, a graduate student working in Baskaran Thyagarajan's laboratory at the University of Wyoming's School of Pharmacy -- a research group known as "Baskilab."

"In our bodies, white fat cells store energy and brown fat cells serve as thermogenic (heat produced by burning fat) machinery to burn stored fat. Eating calorie-rich food and a lack of physical activity cause an imbalance in metabolism that leads to obesity."

While pursuing a strategy for obesity management, our group's laboratory data revealed that "dietary capsaicin -- a chief 'agonist' (initiator of a response) of transient receptor potential vanilloid 1 (TRPV1) channel protein -- suppresses high-fat-diet-induced obesity," Krishnan said.

Baskilab has found that high-fat-diet obesity and dietary capsaicin -- 0.01 percent of capsaicin in the total high fat diet -- prevented high-fat-diet-induced weight gain in trials with wild type mice, but not in mice that genetically lacked TRPV1.

Further, dietary capsaicin didn't modify food or water intake in these mice, "although it did significantly increase the metabolic activity and energy expenditure in wild type mice fed a high-fat diet, "but not for mice that genetically lack TRPV1" Krishnan noted.

So, Baskilab's overarching hypothesis is that dietary capsaicin induces browning of white adipose tissue and stimulates thermogenesis to counteract obesity. "The main goal of our work is to expand the knowledge of the mechanism by which capsaicin antagonizes obesity, as well as to advance the proof of principle of the anti-obesity potential of dietary capsaicin. Next, we'll focus on our longer-term goal of developing TRPV1 agonists as new drug molecules to prevent and treat obesity," said researchers from Baskilab.

Developing a natural dietary supplement as a strategy to combat obesity can be easily advanced to human clinical trials, according to the researchers. "We envision a nanoparticle-based sustained-release formulation of capsaicin, which is currently under development in our laboratory," added researchers from Baskilab. "In turn, this will advance a novel dietary supplement-based approach to prevent and treat one of the life-threatening diseases, obesity and its associated complications -- in humans."

The group's strategy to counteract obesity is expected to form a major focus of future healthcare priorities for both the National Institutes of Health and Department of Defense.

Baskilab has already submitted a patent application for the drug delivery aspect of the discovery.

The poster #B399, "Dietary capsaicin and exercise: analysis of a two-pronged approach to counteract obesity" by Vivek Krishnan, Kevin Fettel and Baskaran Thyagarajan, will be in a poster session beginning at 1:45 p.m. on Sunday, February 8, 2015 in Hall C of the Baltimore Convention Center. ABSTRACT: http://tinyurl.com/kjq6tpp

ABOUT THE MEETING

Each year, the Biophysical Society Annual Meeting brings together more than 6,500 researchers working in the multidisciplinary fields representing biophysics. With more than 3,600 poster presentations, over 200 exhibits, and more than 20 symposia, the BPS Annual Meeting is the largest meeting of biophysicists in the world. Despite its size, the meeting retains its small-meeting flavor through its subgroup symposia, platform sessions, social activities and committee programs. The 59th Annual Meeting will be held at the Baltimore Convention Center.

PRESS REGISTRATION

The Biophysical Society invites professional journalists, freelance science writers and public information officers to attend its Annual Meeting free of charge. For press registration, contact Ellen Weiss at or Jason Bardi at 240-535-4954.

QUICK LINKS

Main Meeting Page: http://tinyurl.com/k8yfvyq
Symposia: http://tinyurl.com/lrahzbu
Itinerary planner: http://tinyurl.com/kxpe272

ABOUT THE SOCIETY

The Biophysical Society, founded in 1958, is a professional, scientific Society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, bi-monthly journal, and committee and outreach activities. Its 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry.

For more information on the Society, or the 2015 Annual Meeting, visit http://www.biophysics.org 

Contact Information
Jason Socrates Bardi, AIP
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi, AIP | newswise

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>