Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Weight Struggles? Blame New Neurons in Your Hypothalamus

Neurogenesis spurred by a high-fat diet encourages more eating and fat storage, animal study suggests

New nerve cells formed in a select part of the brain could hold considerable sway over how much you eat and consequently weigh, new animal research by Johns Hopkins scientists suggests in a study published in the May issue of Nature Neuroscience.

The idea that the brain is still forming new nerve cells, or neurons, into adulthood has become well-established over the past several decades, says study leader Seth Blackshaw, Ph.D., an associate professor in the Solomon H. Snyder Department of Neuroscience at the Johns Hopkins University School of Medicine. However, he adds, researchers had previously thought that this process, called neurogenesis, only occurs in two brain areas: the hippocampus, involved in memory, and the olfactory bulb, involved in smell.

More recent research suggests that a third area, the hypothalamus — associated with a variety of bodily functions, including sleep, body temperature, hunger and thirst — also produces new neurons. However, the precise source of this neurogenesis and the function of these newborn neurons remained a mystery.

To answer these questions, Blackshaw and his colleagues used mice as a model system. The researchers started by investigating whether any particular part of the hypothalamus had a high level of cell growth, suggesting that neurogenesis was occurring. They injected the animals with a compound called bromodeoxyuridine (BrdU), which selectively incorporates itself into newly replicating DNA of dividing cells, where it’s readily detectable. Within a few days, the researchers found high levels of BrdU in an area of the hypothalamus called the median eminence, which lies on the base of the brain’s fluid-filled third ventricle.

Further tests showed that these rapidly proliferating cells were tanycytes, a good candidate for producing new neurons since they have many characteristics in common with cells involved in neurogenesis during early development. To confirm that tanycytes were indeed producing new neurons and not other types of cells, Blackshaw and his colleagues selectively bred mice that produced a fluorescent protein only in their tanycytes. Within a few weeks, they found neurons that also fluoresced, proof that these cells came from tanycyte progenitors.

With the source of hypothalamic neurogenesis settled, the researchers turned to the question of function. Knowing that many previous studies have suggested that animals raised on a high-fat diet are at significantly greater risk of obesity and metabolic syndrome as adults, Blackshaw’s team wondered whether hypothalamic neurogenesis might play a role in this phenomenon.

The researchers fed mice a diet of high-fat chow starting at weaning and looked for evidence of neurogenesis at several different time points. While very young animals showed no difference compared with mice fed normal chow, neurogenesis quadrupled in adults that had consistently eaten the high-fat chow since weaning. These animals gained more weight and had higher fat mass than animals raised on normal chow.

When Blackshaw and his colleagues killed off new neurons in the high-fat eaters by irradiating just their median eminences with precise X-ray beams, the mice gained significantly less weight and fat than animals who had eaten the same diet and were considerably more active, suggesting that these new neurons play a critical role in regulating weight, fat storage and energy expenditure.

“People typically think growing new neurons in the brain is a good thing — but it’s really just another way for the brain to modify behavior,” Blackshaw explains. He adds that hypothalamic neurogenesis is probably a mechanism that evolved to help wild animals survive and helped our ancestors do the same in the past. Wild animals that encounter a rich and abundant food source would be well-served to eat as much as possible, since such a resource is typically scarce in nature.

Being exposed to such a resource during youth, and consequently encouraging the growth of neurons that would promote more food intake and energy storage in the future, would be advantageous. However, Blackshaw explains, for lab animals as well as people in developed countries, who have nearly unlimited access to abundant food, such neurogenesis isn’t necessarily beneficial — it could encourage excessive weight gain and fat storage when they’re not necessary.

If the team’s work is confirmed in future studies, he adds, researchers might eventually use these findings as a basis to treat obesity by inhibiting hypothalamic neurogenesis, either by irradiating the median eminence or developing drugs that inhibit this process.

Other Hopkins researchers involved in this study include Daniel A. Lee, Joseph L. Bedong, Thomas Pak, Hong Wang, Juan Song, Ana Miranda-Angulo, Vani Takiar, Vanessa Charubhumi, Susan Aja and Eric Ford.

This research was supported by the National Institutes of Health, the National Science Foundation, a Basil O’Connor Starter Scholar Award, the Klingenstein Fund and NARSAD. Seth Blackshaw is a W.M. Keck Distinguished Young Scholar in Medical Research.

Related Stories:
Seth Blackshaw on mapping genes in order to find treatments for hereditary blindness

Genetic 'Parts' List Now Available For Key Part of The Mammalian Brain

'Moonlighting' Molecules Discovered

The Difference Between Eye Cells is...Sumo?

For more information, go to:
Media Contacts:
Audrey Huang; 410-614-5105;
Vanessa McMains; 410-502-9410;

Audrey Huang | EurekAlert!
Further information:

Further reports about: Blame Hypothalamus Neuroscience X-ray beam brain area fat storage nerve cell neurons

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>