Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VARI Findings Could Help Diagnose and Treat Liver Cancer

09.06.2010
Researchers identify an enzyme important for cancer’s ability to spread

In collaboration with the National Cancer Centre, Singapore, Van Andel Research Institute (VARI) researchers have identified an enzyme that could help diagnose and treat cholangiocarcinoma, a form of liver cancer that strikes up to 3,000 new patients each year in the United States.

Cholangiocarcinoma is the second most common type of cancer that affects the hepatobiliary system, which includes the liver, gall bladder, and bile ducts. The disease is most commonly diagnosed in patients in their 60’s and 70’s, and prognosis is generally poor with a 5-year survival rate of less than 5%. The only current curative treatment of the disease is surgery to remove all tumor tissue, but most patients’ cancer is too advanced upon diagnosis to operate.

Southeast Asia is particularly affected by cholangiocarcinoma, but incidence of the disease is rising in the United States, United Kingdom, and Australia.

“An advance in the diagnosis and treatment of this disease could have a profound impact,” said Professor Khee Chee Soo, Director of the National Cancer Centre, Singapore. “Cholangiocarcinoma is especially prevalent in Southeast Asia where, because of chronic infections by liver flukes and other factors, it kills thousands each year.”

Cholangiocarcinoma and hepatocellularcarcinoma (HCC) are the two main forms of malignant liver cancer and require different treatments. Researchers found that the enzyme p38delta mitogen-activated protein kinase (MAPK13) is found in higher levels in cholangiocarcinomas than in HCC or normal tissue, and that it plays a role in the ability of tumor cells to move and invade normal tissue.

MAPK13 could be used as a complement to current biomarkers in diagnosing cholangiocarcinoma and distinguishing it from HCC, and it could serve as a drug target to help treat cholangiocarcinoma.

“Cholangiocarcinomas are notoriously challenging to diagnose and treat,” said VARI Distinguished Scientific Investigator Bin Tean Teh, M.D., Ph.D., whose laboratory published its findings in the May 15 issue of the International Journal of Cancer. “Discoveries that lead to earlier detection and diagnosis will improve the long-term survival rate of patients.”

Tissues used in the study were obtained from the National Cancer Centre, Singapore, and the Singapore General Hospital.

This work was partly supported by the Singapore Millennium Foundation and the National Cancer Centre Research Foundation.

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

Further reports about: Andel Cancer Foundation HCC Singapore VAI VARI chronic infection liver cancer normal tissue

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>