Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Night Blindness and Calcium

01.04.2010
Congenital stationary night blindness, an inherited condition that affects one’s ability to see in the dark, is caused by a mutation in a calcium channel protein that shuttles calcium into and out of cells.

Now, researchers at the Johns Hopkins University School of Medicine have teased apart the molecular mechanism behind this mutation, uncovering a more general principle of how cells control calcium levels.

The discovery, published in the Feb. 18 issue of Nature, could have implications for several other conditions, including neurodegenerative diseases such as schizophrenia and Alzheimer’s, Parkinson’s and Huntington’s diseases.

“Calcium is so crucial for normal functions like heart contraction, insulin control and brain function,” says David Yue, M.D., Ph.D., a professor of biomedical engineering and director of the Calcium Signals Lab at Hopkins. “If calcium levels are off at any time, disease can ensue. Our new approach, watching calcium channels in action in living cells, allowed us to tease apart how they behave and how they’re controlled and find a new module that could be targeted for drug design.”

The aberrant calcium channel protein that causes this type of night blindness is missing the tail end of the protein. Yue’s team compared the ability of this protein to full length versions by examining how well they can maintain electrical current in cells. Normal channels show a decrease in current with an increase in calcium levels. “We and others initially believed that the missing piece of the protein might behave to simply switch off the ability of elevated intracellular calcium to inhibit this current,” says Yue. “Without this module, there’s no way to down-regulate the calcium entering through these channels.”

Yue’s team found out, however, that in reality, this module functions in a far richer and nuanced manner. Calcium channels are known to be controlled by the protein CaM, which senses and binds to calcium, whereupon CaM binds to channels in a manner that inhibits their calcium transport function. To figure out how the tail module works in conjunction with CaM to control the calcium channel, the team used a molecular optical sensor tool that enabled them to see in live cells different levels of CaM, a controller of the channel protein. When CaM is abundant, the sensor glows cyan; when CaM is low, the sensor glows yellow.

The researchers found that the tail module doesn’t simply turn off channel sensitivity to calcium; rather, the module smoothly retunes how sensitive channels are to CaM, and in turn how sensitive the transport function of channels is to intracellular calcium. In all, the tail module smoothly adjusts how much calcium enters cells. This manner of adjustment “may bear on many neurodegenerative diseases where calcium is dysregulated,” says Yue.

With the optical sensor, Yue and his team next will examine other types of live cells, including nerve and heart cells, to measure whether changes in calcium channel behavior can lead to disease-like states.

This study was funded by the National Institute of Mental Health, the National Heart, Lung and Blood Institute and the National Institute on Deafness and Other Communication Disorders.

Authors on the paper are Xiaodong Liu, Philemon Yang, Wanjun Yang and David Yue, all of Johns Hopkins.

On the Web:
Calcium Signals Lab http://ww2.jhu.edu/csl/
Nature http://www.nature.com/nature/journal/v463/n7283/full/nature08766.html
Biomedical Engineering at Johns Hopkins http://www.bme.jhu.edu/
Faculty of 1000 Biology http://f1000biology.com/article/id/2389956/evaluation
Science Signaling http://stke.sciencemag.org/cgi/content/abstract/sigtrans;3/110/ec62

Audrey Huang | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>