Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists identify novel pathway for T-cell activation in leprosy

26.03.2012
Finding may help develop new treatments for infectious diseases, cancer

UCLA researchers pinpointed a new mechanism that potently activates T-cells, the group of white blood cells that play a major role in fighting infections.

Published March 25 online in Nature Medicine, the team specifically studied how dendritic cells, immune cells located at the site of infection, become more specialized to fight the leprosy pathogen known as Mycobacterium leprae. Dendritic cells, like scouts in the field of a military operation, deliver key information about an invading pathogen that helps activate the T-cells in launching a more effective attack.

It was previously known that dendritic cells were important for a strong immune response and the number of such cells at an infection site positively correlated with a robust reaction. However, until now it was poorly understood how dendritic cells become more specialized to address specific types of infections.

The researchers found that a protein called NOD2 triggers a cell-signaling molecule called interleukin-32 that induces general immune cells called monocytes to become specialized information-carrying dendritic cells.

"This is the first time that this potent infection-fighting pathway with dendritic cells has been identified, and demonstrated to be important in fighting human disease," said the study's first author Mirjam Schenk, postdoctoral scholar, division of dermatology, David Geffen School of Medicine at UCLA.

In conducting the study, scientists used monocytes taken from the blood of healthy donors and leprosy patients and incubated the cells with the pathogen M. Leprae or specific parts of the mycobacteria, known to trigger NOD2 and TLR2, both associated with immune system activation.

Scientists wanted to investigate how these proteins might trigger mechanisms that turn on different immune receptors that recognize specific parts of the microbe in an infection. The NOD2 interleukin-32 pathway was the most effective and caused monocytes to develop into dendritic cells that carry critical information about the pathogen to the T-cells.

The team studied the gene expression profiles of the protein-triggered pathways and then also examined how the monocytes of leprosy patients responded to NOD2. Scientists found that NOD2 worked to induce moncytes to dendritic cells in tuberloid leprosy, a milder infection that is more easily contained. The NOD2 pathway was inhibited and could not be activated in lepromatous leprosy, which is more serious and causes widespread infection throughout the body.

"We were surprised to find the high potency of the dendritic cells in triggering certain specific T-cell responses, which may be useful in developing new therapeutic strategies for infectious diseases and cancer," said senior investigator Dr. Robert Modlin, UCLA's Klein Professor of Dermatology and chief of dermatology at the Geffen School of Medicine.

Leprosy, one of the world's oldest known diseases, is a chronic infectious disease that affects the skin, the peripheral nerves, the upper respiratory tract and the eyes and can lead to disfigurement of the hands, face and feet. In 2008, approximately 249,000 new cases of leprosy were reported worldwide, according to the World Health Organization.

Modlin adds that leprosy is a good model to study immune mechanisms in host defense since it presents as a clinical spectrum that correlates with the level and type of immune response of the pathogen.

The next stage of research will involve trying to further understand how to manipulate the innate immune system to induce a potent immune response in human infections and possibly for cancer immunotherapy as well.

The study was funded by the NIH's National Institute of Allergy and Infectious Diseases and National Institute of Arthritis and Musculoskeletal and Skin Diseases. (Grant numbers: RO1s AI022553, AR040312 and AI047868.)

Additional authors include: Stephan R Krutzik, Peter A Sieling, Delphine J. Lee, Rosane M. B. Teles, and Maria Teresa Ochoa from the Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA; Genhong Cheng, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA; Evangelia Komisopoulou and Thomas G. Graeber, Crump Institute for Molecular Imaging, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, Department of Molecular and Medical Pharmacology, UCLA; Euzenir N. Sarno, Department of Mycobacteriosis, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Thomas H. Rea, Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California and Soohyun Kim, Department of Biomedical Science and Technology, Konkuk University, Seoul Korea.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>