Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists identify novel pathway for T-cell activation in leprosy

26.03.2012
Finding may help develop new treatments for infectious diseases, cancer

UCLA researchers pinpointed a new mechanism that potently activates T-cells, the group of white blood cells that play a major role in fighting infections.

Published March 25 online in Nature Medicine, the team specifically studied how dendritic cells, immune cells located at the site of infection, become more specialized to fight the leprosy pathogen known as Mycobacterium leprae. Dendritic cells, like scouts in the field of a military operation, deliver key information about an invading pathogen that helps activate the T-cells in launching a more effective attack.

It was previously known that dendritic cells were important for a strong immune response and the number of such cells at an infection site positively correlated with a robust reaction. However, until now it was poorly understood how dendritic cells become more specialized to address specific types of infections.

The researchers found that a protein called NOD2 triggers a cell-signaling molecule called interleukin-32 that induces general immune cells called monocytes to become specialized information-carrying dendritic cells.

"This is the first time that this potent infection-fighting pathway with dendritic cells has been identified, and demonstrated to be important in fighting human disease," said the study's first author Mirjam Schenk, postdoctoral scholar, division of dermatology, David Geffen School of Medicine at UCLA.

In conducting the study, scientists used monocytes taken from the blood of healthy donors and leprosy patients and incubated the cells with the pathogen M. Leprae or specific parts of the mycobacteria, known to trigger NOD2 and TLR2, both associated with immune system activation.

Scientists wanted to investigate how these proteins might trigger mechanisms that turn on different immune receptors that recognize specific parts of the microbe in an infection. The NOD2 interleukin-32 pathway was the most effective and caused monocytes to develop into dendritic cells that carry critical information about the pathogen to the T-cells.

The team studied the gene expression profiles of the protein-triggered pathways and then also examined how the monocytes of leprosy patients responded to NOD2. Scientists found that NOD2 worked to induce moncytes to dendritic cells in tuberloid leprosy, a milder infection that is more easily contained. The NOD2 pathway was inhibited and could not be activated in lepromatous leprosy, which is more serious and causes widespread infection throughout the body.

"We were surprised to find the high potency of the dendritic cells in triggering certain specific T-cell responses, which may be useful in developing new therapeutic strategies for infectious diseases and cancer," said senior investigator Dr. Robert Modlin, UCLA's Klein Professor of Dermatology and chief of dermatology at the Geffen School of Medicine.

Leprosy, one of the world's oldest known diseases, is a chronic infectious disease that affects the skin, the peripheral nerves, the upper respiratory tract and the eyes and can lead to disfigurement of the hands, face and feet. In 2008, approximately 249,000 new cases of leprosy were reported worldwide, according to the World Health Organization.

Modlin adds that leprosy is a good model to study immune mechanisms in host defense since it presents as a clinical spectrum that correlates with the level and type of immune response of the pathogen.

The next stage of research will involve trying to further understand how to manipulate the innate immune system to induce a potent immune response in human infections and possibly for cancer immunotherapy as well.

The study was funded by the NIH's National Institute of Allergy and Infectious Diseases and National Institute of Arthritis and Musculoskeletal and Skin Diseases. (Grant numbers: RO1s AI022553, AR040312 and AI047868.)

Additional authors include: Stephan R Krutzik, Peter A Sieling, Delphine J. Lee, Rosane M. B. Teles, and Maria Teresa Ochoa from the Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA; Genhong Cheng, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA; Evangelia Komisopoulou and Thomas G. Graeber, Crump Institute for Molecular Imaging, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, Department of Molecular and Medical Pharmacology, UCLA; Euzenir N. Sarno, Department of Mycobacteriosis, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Thomas H. Rea, Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California and Soohyun Kim, Department of Biomedical Science and Technology, Konkuk University, Seoul Korea.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>