Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI, French researchers find master switch for adult epilepsy

28.06.2011
Study identifies new approach to preventing the chronic neurologic condition

UC Irvine and French researchers have identified a central switch responsible for the transformation of healthy brain cells into epileptic ones, opening the way to both treat and prevent temporal lobe epilepsy.

Epilepsy affects 1 to 2 percent of the world's population, and TLE is the most common form of the disorder in adults. Among adult neurologic conditions, only migraine headaches are more prevalent. TLE is resistant to treatment in 30 percent of cases.

UCI neurologist and neuroscientist Dr. Tallie Z. Baram and her colleagues found that TLE manifests after a major reorganization of the molecules governing the behavior of neurons, the cells that communicate within the brain. These alterations often stem from prolonged febrile seizures, brain infections or trauma.

“This discovery marks a dramatic change in our understanding of how TLE comes about. Previously, it was believed that neurons died after damaging events and that the remaining neurons reorganized with abnormal connections,” said Baram, the Danette Shepard Chair in Neurological Studies. “However, in both people and model animals, epilepsy can arise without the apparent death of brain cells. The neurons simply seem to behave in a very abnormal way.”

To learn why, Baram’s UCI team collaborated with a French group led by Christophe Bernard of the University of Marseille and Inserm. They focused on ion channels, molecules that straddle the boundaries of brain cells and govern how they fire and communicate among themselves.

Specifically, they explored an ion channel called HCN1 — which is suppressed in response to brain seizures, injuries and infections that lead to epilepsy — hoping to find the long-sought mechanism that triggers epileptic activity in previously normal brain cells.

In their study, which appears online in the Annals of Neurology, the researchers reveal that mechanism: The HCN1 channel gene and about three dozen other important genes are altered by a major cellular repressor called NRSF, which increases after events that give rise to epilepsy.

NRSF proteins work by attaching to the DNA of selected genes and shutting them down, causing neurons to fire abnormally and promoting the development of epilepsy. This was discovered when Baram and her colleagues prevented NRSF from linking to HCN1 and other NRSF-regulated genes, the development of epilepsy was markedly lessened.

This NRSF binding process is an example of epigenetics — enduring changes to gene expression without changes to the DNA sequence. Baram said the study is the first to show the significance of epigenetic mechanisms in the formation of epilepsy. The findings also point to NRSF having a larger role in influencing brain activity.

“NRSF operates like a master switch on many genes affecting neuron function,” said Shawn McClelland, UCI researcher and study co-author. “And if its levels increase, it can provoke changes lasting for years.”

“We’re quite excited about this discovery,” Baram said. “Understanding how previous brain infections, seizures or injuries can interact with the cellular machinery to cause epilepsy is a crucial step toward designing drugs to prevent the process. We don’t want to just treat people with epilepsy. We hope to develop medicines that will prevent epilepsy from occurring – and influence the lives of millions of people around the globe.”

The founder of UCI’s Epilepsy Research Center, Baram is considered the world’s leading investigator of the basic neural mechanisms involved in childhood febrile seizures — those caused by high fever — and how prolonged febrile seizures might lead to the onset of TLE.

Celine Dubé, Cristina Richichi and Qinqin Zha of UCI and Corey Flynn, Antoine Ghestem and Monique Esclapez of the University of Marseille and Inserm — the French national biomedical research agency — also contributed to the study, which received support from the National Institutes of Health and the French Institute of Health & Medical Research.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s largest employer, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>