Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI, French researchers find master switch for adult epilepsy

28.06.2011
Study identifies new approach to preventing the chronic neurologic condition

UC Irvine and French researchers have identified a central switch responsible for the transformation of healthy brain cells into epileptic ones, opening the way to both treat and prevent temporal lobe epilepsy.

Epilepsy affects 1 to 2 percent of the world's population, and TLE is the most common form of the disorder in adults. Among adult neurologic conditions, only migraine headaches are more prevalent. TLE is resistant to treatment in 30 percent of cases.

UCI neurologist and neuroscientist Dr. Tallie Z. Baram and her colleagues found that TLE manifests after a major reorganization of the molecules governing the behavior of neurons, the cells that communicate within the brain. These alterations often stem from prolonged febrile seizures, brain infections or trauma.

“This discovery marks a dramatic change in our understanding of how TLE comes about. Previously, it was believed that neurons died after damaging events and that the remaining neurons reorganized with abnormal connections,” said Baram, the Danette Shepard Chair in Neurological Studies. “However, in both people and model animals, epilepsy can arise without the apparent death of brain cells. The neurons simply seem to behave in a very abnormal way.”

To learn why, Baram’s UCI team collaborated with a French group led by Christophe Bernard of the University of Marseille and Inserm. They focused on ion channels, molecules that straddle the boundaries of brain cells and govern how they fire and communicate among themselves.

Specifically, they explored an ion channel called HCN1 — which is suppressed in response to brain seizures, injuries and infections that lead to epilepsy — hoping to find the long-sought mechanism that triggers epileptic activity in previously normal brain cells.

In their study, which appears online in the Annals of Neurology, the researchers reveal that mechanism: The HCN1 channel gene and about three dozen other important genes are altered by a major cellular repressor called NRSF, which increases after events that give rise to epilepsy.

NRSF proteins work by attaching to the DNA of selected genes and shutting them down, causing neurons to fire abnormally and promoting the development of epilepsy. This was discovered when Baram and her colleagues prevented NRSF from linking to HCN1 and other NRSF-regulated genes, the development of epilepsy was markedly lessened.

This NRSF binding process is an example of epigenetics — enduring changes to gene expression without changes to the DNA sequence. Baram said the study is the first to show the significance of epigenetic mechanisms in the formation of epilepsy. The findings also point to NRSF having a larger role in influencing brain activity.

“NRSF operates like a master switch on many genes affecting neuron function,” said Shawn McClelland, UCI researcher and study co-author. “And if its levels increase, it can provoke changes lasting for years.”

“We’re quite excited about this discovery,” Baram said. “Understanding how previous brain infections, seizures or injuries can interact with the cellular machinery to cause epilepsy is a crucial step toward designing drugs to prevent the process. We don’t want to just treat people with epilepsy. We hope to develop medicines that will prevent epilepsy from occurring – and influence the lives of millions of people around the globe.”

The founder of UCI’s Epilepsy Research Center, Baram is considered the world’s leading investigator of the basic neural mechanisms involved in childhood febrile seizures — those caused by high fever — and how prolonged febrile seizures might lead to the onset of TLE.

Celine Dubé, Cristina Richichi and Qinqin Zha of UCI and Corey Flynn, Antoine Ghestem and Monique Esclapez of the University of Marseille and Inserm — the French national biomedical research agency — also contributed to the study, which received support from the National Institutes of Health and the French Institute of Health & Medical Research.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s largest employer, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>