Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB Creates National Network to Advance Personalized Medicine in Rheumatoid Arthritis

27.10.2009
The University of Alabama at Birmingham (UAB) is spearheading an effort to create a national database and repository to enable researchers to identify predictors of effectiveness of various treatments for rheumatoid arthritis (RA). RA is the most common type of inflammatory arthritis. Many effective medications exist, but they vary greatly in cost and side effects, and there is no way to predict which drug will work best on an individual.

A two-year, $3.3 million Grand Opportunity (GO) grant from the National Institute of Arthritis, Musculoskeletal, and Skin Diseases (NIAMS) and funds from the national office and the Alabama chapter of the Arthritis Foundation will establish the Treatment Efficacy and Toxicity in Rheumatoid Arthritis Database and Repository (TETRAD).

Led by UAB with 10 participating sites, TETRAD will create a large, sustainable database of treatment-response data and a repository of accompanying samples of DNA and blood cells from RA patients starting treatment with different drugs.

“TETRAD will address one of the major roadblocks to personalized medicine in RA, which is the lack of coordinated effort between academic researchers, federal funding agencies, voluntary health agencies, professional organizations, the pharmaceutical industry and biotechnology companies,” said S. Louis Bridges Jr., M.D., Ph.D., director of the UAB Division of Clinical Immunology and Rheumatology and principal investigator for TETRAD. “The ultimate goal is to better understand the molecular basis of treatment response and to rapidly accelerate research in RA to allow prediction of which drugs will work best in individual patients.”

No single drug is effective for every patient, and there is great variability in toxicity and price, ranging from about $400 to $15,000 a year. Bridges says the next major advance needed in the treatment of RA is not additional drugs, but, rather, a dramatic improvement in the efficiency and cost-effectiveness of the use of current drugs for individual patients with RA.

“TETRAD will fill a critical need by aligning and uniting the efforts of many organizations with the common goal of improving care for RA patients,” Bridges said. “By unifying the efforts of academic researchers, we can create resources that would not otherwise be available, such as a bank of cryo-preserved blood cells to enable sophisticated immunologic research to dissect molecular signals of successful treatment of RA.”

Other sites participating in TETRAD include the Feinstein Institute for Medical Research and North Shore LIJ Health System, Manhasset, N.Y.; Johns Hopkins University; University of Colorado; University of California at San Francisco; University of Pittsburgh; University of Nebraska; Stanford University; Duke University; and Brigham and Women’s Hospital/Harvard University.

About the UAB Division of Clinical Immunology and Rheumatology
The UAB Division of Clinical Immunology and Rheumatology is internationally-recognized and dedicated to pursuing new knowledge and translating research findings into more effective diagnosis and treatment of patients with rheumatic diseases.

EDITOR’S NOTE: The University of Alabama at Birmingham (UAB) is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on second reference.

Bob Shepard | Newswise Science News
Further information:
http://www.uab.edu/news

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>