Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB Creates National Network to Advance Personalized Medicine in Rheumatoid Arthritis

27.10.2009
The University of Alabama at Birmingham (UAB) is spearheading an effort to create a national database and repository to enable researchers to identify predictors of effectiveness of various treatments for rheumatoid arthritis (RA). RA is the most common type of inflammatory arthritis. Many effective medications exist, but they vary greatly in cost and side effects, and there is no way to predict which drug will work best on an individual.

A two-year, $3.3 million Grand Opportunity (GO) grant from the National Institute of Arthritis, Musculoskeletal, and Skin Diseases (NIAMS) and funds from the national office and the Alabama chapter of the Arthritis Foundation will establish the Treatment Efficacy and Toxicity in Rheumatoid Arthritis Database and Repository (TETRAD).

Led by UAB with 10 participating sites, TETRAD will create a large, sustainable database of treatment-response data and a repository of accompanying samples of DNA and blood cells from RA patients starting treatment with different drugs.

“TETRAD will address one of the major roadblocks to personalized medicine in RA, which is the lack of coordinated effort between academic researchers, federal funding agencies, voluntary health agencies, professional organizations, the pharmaceutical industry and biotechnology companies,” said S. Louis Bridges Jr., M.D., Ph.D., director of the UAB Division of Clinical Immunology and Rheumatology and principal investigator for TETRAD. “The ultimate goal is to better understand the molecular basis of treatment response and to rapidly accelerate research in RA to allow prediction of which drugs will work best in individual patients.”

No single drug is effective for every patient, and there is great variability in toxicity and price, ranging from about $400 to $15,000 a year. Bridges says the next major advance needed in the treatment of RA is not additional drugs, but, rather, a dramatic improvement in the efficiency and cost-effectiveness of the use of current drugs for individual patients with RA.

“TETRAD will fill a critical need by aligning and uniting the efforts of many organizations with the common goal of improving care for RA patients,” Bridges said. “By unifying the efforts of academic researchers, we can create resources that would not otherwise be available, such as a bank of cryo-preserved blood cells to enable sophisticated immunologic research to dissect molecular signals of successful treatment of RA.”

Other sites participating in TETRAD include the Feinstein Institute for Medical Research and North Shore LIJ Health System, Manhasset, N.Y.; Johns Hopkins University; University of Colorado; University of California at San Francisco; University of Pittsburgh; University of Nebraska; Stanford University; Duke University; and Brigham and Women’s Hospital/Harvard University.

About the UAB Division of Clinical Immunology and Rheumatology
The UAB Division of Clinical Immunology and Rheumatology is internationally-recognized and dedicated to pursuing new knowledge and translating research findings into more effective diagnosis and treatment of patients with rheumatic diseases.

EDITOR’S NOTE: The University of Alabama at Birmingham (UAB) is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on second reference.

Bob Shepard | Newswise Science News
Further information:
http://www.uab.edu/news

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>