Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-pronged attack on chemotherapy-resistant leukemia cells

19.05.2016

Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer in Switzerland. Despite intensive chemotherapy, one fifth of the patients suffer a relapse, which usually goes hand in hand with a poor prognosis. Researchers from the University of Zurich and the Children’s Hospital Zurich have now found a way to kill off resistant leukemia cells: via necroptosis.

ALL stems from malignant transformed precursor lymphocytes, the blood’s defense cells. Nowadays, four out of five young leukemia patients can be treated successfully with aggressive chemotherapy.


Childhood cancer: targeted therapy of resistant leukemia cells

Gabriela Acklin, Children’s Hospital Zurich

However, this ostensibly positive record in pediatric oncology is tarnished by the fact that the cancer cells develop a resistance to the drugs in around 20 percent of cases. As their chances of recovery are slim, medicine is urgently seeking new treatment options for these patients.

Chemotherapeutic drugs trigger a program of molecular “suicide” – so-called “apoptosis” – in the cancer cells. All the cells in our body possess this mechanism, which is activated as soon as a cell is severely damaged. Every day, millions of cells die naturally from apoptotic processes – which is crucial for our bodies to function normally. However, cancer cells have founds ways and means to upset the balance between survival and death.

Despite aggressive chemotherapy, they manage to suppress apoptosis, which renders them resistant to the drugs. A team of scientists headed by UZH researchers Jean-Pierre Bourquin and Beat Bornhauser from the Children’s Hospital Zurich has now found a way to eliminate these resistant leukemia cells.

Activation of necroptosis causes resistant cancer cells to die off

“Our research reveals that an alternative cell-death program, necroptosis, can be activated in human ALL cells. This enables leukemia cells that barely respond to existing chemotherapeutic drugs to be killed off,” explains Bornhauser, a researcher from the Department of Oncology.

The enzyme RIP1 kinase is chiefly responsible for regulating necroptosis. It controls the molecular switch points that govern whether the cell lives or dies. The researchers identified several substances known as “SMAC mimetics”, which activate RIP1 by suppressing the inhibition of the enzyme.

In order to test the efficacy of these SMAC mimetics, the group used a humanized mouse model they developed at the Children’s Hospital Zurich, which enables human leukemia cells to be studied in a living organism. This showed that the leukemia cells in one third of all patient samples tested responded highly sensitively to SMAC mimetics – and died off.

Molecular mechanism decoded with the aid of “gene scissors”

To find out how this cancer-inhibiting effect works, Scott McComb and Julia Aguadé-Gorgorio, the first authors of the study, used the CRISPR-Cas9 method, which is also referred to as “gene scissors”, for the first time in primary human leukemia cells. They discovered that both apoptosis and necroptosis, which are triggered by SMAC mimetics, specifically depend on RIP1 kinase.

None of the established chemotherapy drugs activates this RIP1-dependent cell-death mechanism. If the genes responsible for apoptosis were disabled via genome editing, the leukemia cells died due to necroptosis after SMAC mimetics had been administered. If the necroptotic genes were no longer functioning properly, apoptosis led to cell death. Only the simultaneous deactivation of apoptotic and necroptotic genes resulted in the complete resistance of the cancer cells to SMAC mimetics.

Therefore, the simultaneous activation of apoptosis and necroptosis in the cancer cells is responsible for the strong anti-leukemic effect. “SMAC mimetics have great potential to eliminate leukemia cells in patients that aren’t sensitive to established chemotherapeutic drugs. They are effectively a double-edged sword: They kill cells that block apoptosis through necroptosis,” concludes Bornhauser. The researchers are now looking for suitable biomarkers to identify patients who might benefit from treatment with SMAC mimetics in clinical trials.

Study funding
The project was funded by the Childhood Cancer Research Foundation Switzerland, the Empiris Foundation, the Panacée Foundation, the Swiss Cancer Research Foundation, the Clinical Research Priority Program “Human Hemato-Lymphatic Diseases“ and the University of Zurich’s Forschungskredit and the Children’s Research Center at the Children’s Hospital Zurich.

Literature:
Scott McCom, Júlia Aguadé-Gorgorió, Lena Harder, Blerim Marovca, Gunnar Cario, Cornelia Eckert, Martin Schrappe, Martin Stanulla, Arend von Stackelberg, Jean-Pierre Bourquin, Beat C. Bornhauser. Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Science Translational Medicine. May 18, 2016. doi: 10.1126/scitranslmed.aad2986

Contact:
Beat Bornhauser, PhD
Department of Oncology, Children’s Research Center
Children’s Hospital Zurich
Phone: +41 44 634 88 17
E-mail: beat.bornhauser@kispi.uzh.ch
Website: https://www.kispi.uzh.ch/fzk/de/abteilungen/onkologie/leukaemien/Seiten/default....

Weitere Informationen:

http://www.media.uzh.ch/en/medienmitteilungen/2016/behandlung-leukaemie.html

Kurt Bodenmüller | Universität Zürich

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>