Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Two-pronged attack on chemotherapy-resistant leukemia cells


Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer in Switzerland. Despite intensive chemotherapy, one fifth of the patients suffer a relapse, which usually goes hand in hand with a poor prognosis. Researchers from the University of Zurich and the Children’s Hospital Zurich have now found a way to kill off resistant leukemia cells: via necroptosis.

ALL stems from malignant transformed precursor lymphocytes, the blood’s defense cells. Nowadays, four out of five young leukemia patients can be treated successfully with aggressive chemotherapy.

Childhood cancer: targeted therapy of resistant leukemia cells

Gabriela Acklin, Children’s Hospital Zurich

However, this ostensibly positive record in pediatric oncology is tarnished by the fact that the cancer cells develop a resistance to the drugs in around 20 percent of cases. As their chances of recovery are slim, medicine is urgently seeking new treatment options for these patients.

Chemotherapeutic drugs trigger a program of molecular “suicide” – so-called “apoptosis” – in the cancer cells. All the cells in our body possess this mechanism, which is activated as soon as a cell is severely damaged. Every day, millions of cells die naturally from apoptotic processes – which is crucial for our bodies to function normally. However, cancer cells have founds ways and means to upset the balance between survival and death.

Despite aggressive chemotherapy, they manage to suppress apoptosis, which renders them resistant to the drugs. A team of scientists headed by UZH researchers Jean-Pierre Bourquin and Beat Bornhauser from the Children’s Hospital Zurich has now found a way to eliminate these resistant leukemia cells.

Activation of necroptosis causes resistant cancer cells to die off

“Our research reveals that an alternative cell-death program, necroptosis, can be activated in human ALL cells. This enables leukemia cells that barely respond to existing chemotherapeutic drugs to be killed off,” explains Bornhauser, a researcher from the Department of Oncology.

The enzyme RIP1 kinase is chiefly responsible for regulating necroptosis. It controls the molecular switch points that govern whether the cell lives or dies. The researchers identified several substances known as “SMAC mimetics”, which activate RIP1 by suppressing the inhibition of the enzyme.

In order to test the efficacy of these SMAC mimetics, the group used a humanized mouse model they developed at the Children’s Hospital Zurich, which enables human leukemia cells to be studied in a living organism. This showed that the leukemia cells in one third of all patient samples tested responded highly sensitively to SMAC mimetics – and died off.

Molecular mechanism decoded with the aid of “gene scissors”

To find out how this cancer-inhibiting effect works, Scott McComb and Julia Aguadé-Gorgorio, the first authors of the study, used the CRISPR-Cas9 method, which is also referred to as “gene scissors”, for the first time in primary human leukemia cells. They discovered that both apoptosis and necroptosis, which are triggered by SMAC mimetics, specifically depend on RIP1 kinase.

None of the established chemotherapy drugs activates this RIP1-dependent cell-death mechanism. If the genes responsible for apoptosis were disabled via genome editing, the leukemia cells died due to necroptosis after SMAC mimetics had been administered. If the necroptotic genes were no longer functioning properly, apoptosis led to cell death. Only the simultaneous deactivation of apoptotic and necroptotic genes resulted in the complete resistance of the cancer cells to SMAC mimetics.

Therefore, the simultaneous activation of apoptosis and necroptosis in the cancer cells is responsible for the strong anti-leukemic effect. “SMAC mimetics have great potential to eliminate leukemia cells in patients that aren’t sensitive to established chemotherapeutic drugs. They are effectively a double-edged sword: They kill cells that block apoptosis through necroptosis,” concludes Bornhauser. The researchers are now looking for suitable biomarkers to identify patients who might benefit from treatment with SMAC mimetics in clinical trials.

Study funding
The project was funded by the Childhood Cancer Research Foundation Switzerland, the Empiris Foundation, the Panacée Foundation, the Swiss Cancer Research Foundation, the Clinical Research Priority Program “Human Hemato-Lymphatic Diseases“ and the University of Zurich’s Forschungskredit and the Children’s Research Center at the Children’s Hospital Zurich.

Scott McCom, Júlia Aguadé-Gorgorió, Lena Harder, Blerim Marovca, Gunnar Cario, Cornelia Eckert, Martin Schrappe, Martin Stanulla, Arend von Stackelberg, Jean-Pierre Bourquin, Beat C. Bornhauser. Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Science Translational Medicine. May 18, 2016. doi: 10.1126/scitranslmed.aad2986

Beat Bornhauser, PhD
Department of Oncology, Children’s Research Center
Children’s Hospital Zurich
Phone: +41 44 634 88 17

Weitere Informationen:

Kurt Bodenmüller | Universität Zürich

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>